

Seminar on Energy and Climate Change

Global Energy System

Iúlia Seixas mjs@fct.unl.pt

https://www.cense.fct.unl.pt/

Energy Demand & Prosperity

Astronom pod/ap001127.html http://antwrp.gsfc.nasa.go

- Global and regional trends of energy consumption
- Access to clean energy
- Energy intensity indicators (energy vs. GDP)
- Questions for the future of the global energy system

World Energy Consumption 1860-2000

 \rightarrow 1^a WW | 2^a WW | oil shocks 1973, 79 | Gulf war 1981 with no impact on the continuously energy increase

 \rightarrow Modern economies very depend from fossil fuels (more than 80%).

 \rightarrow Each "new" energy form does not replace the 'old' forms, but adds on the top.

Photovoltaics

 Geothermal Solar thermal

Biomass (electrical)

Biomass

Wave and tidal

power plants

(fuel) Wind

800

600

World Energy Balance - 2014

Fuel	Transformation		End Use	
Coal 165 EJ	Direct Consumption 158 EJ		Industry 129 EJ	35%
Natural gas 119 EJ	Power and co- generation	Electricity 72 EJ	Transport 107 EJ	32%
Biomass and waste	plants 218 EJ	Losses 135 EJ	Residential 85 EJ	26%
Oil 182 EJ	Refineries and other transformati on	Oil products 158 EJ	Services Non-energy us Conversion los 155 EJ	
	193 EJ	Losses	Losses: 3	0%
Fossil: 81%				

http://www.iea.org/etp/explore/ | DATA - try by yourself!

Primary energy world consumption Million tonnes oil equivalent

Primary energy regional consumption by fuel 2018 Percentage

Shares of global primary energy consumption Percentage

Energy per capita by region Gigajoules per head

Oil production/consumption by region Million barrels daily

Production by region

Consumption by region

Distribution of proved oil reserves: 1997, 2007 and 2018 Percentage

Crude oil prices 1861-2018 US dollars per barrel, world events

Gas production/consumption by region Billion cubic metres

Production by region

Consumption by region

Distribution of proved gas reserves: 1998, 2008 and 2018 Percentage

Coal production/consumption by region

Million tonnes oil equivalent

Consumption by region

Nuclear energy consumption by region Million tonnes oil equivalent

Hydroelectricity consumption by region

Million tonnes oil equivalent

Renewable energy consumption by region/ generation by source

Renewables consumption by region Million tonnes oil equivalent

Renewables generation by source Terawatt-hours

Biofuels production by region Million tonnes oil equivalent

World biofuels production

Regional electricity generation by fuel 2018 Percentage

Share of global electricity generation by fuel Percentage

Energy transformation and losses

EFFICIENCY | INNOVATION

Energy transformation and losses

ENERGY EFFICIENCY

In general terms, energy efficiency refers to the amount of output that can be produced with a given input of energy.

Energy efficiency is measured as the amount of energy output for a given energy input and listed as a percentage between 0% and 100%.

 the amount of mechanical energy that an electric motor produces for a given input of electrical energy

'energy efficiency' means the ratio of output of <u>performance</u>, <u>service</u>, <u>goods</u> or energy, to input of energy:

- thermal comfort in a building is an example of performance;
- transport of persons or of information is a service;
- a smartphone is a good

Energy transformation and losses

ENERGY SAVINGS (energy conservation)

Energy savings are the reduction of energy use, without reference to output produced. It may be achieved through:

- Improved energy efficiency (same technology)
- Rational use of energy (behaviour)
- New products (new technology)
- New energy services (new consumption model)

How can we provide the benefits of energy to the population of the globe without damaging the environment, negatively affecting social stability, or threatening the well-being of future generations?

in Sustainable Energy, MIT 2005

Consumption per capita 2012 Tonnes oil equivalent

OECD countries

Darfur region of Sudan, 2004

Somewhere in central Europe

Somewhere in Southern Europe

Primary Energy and GDP

Total Primary Energy Supply vs. GDP 1971-1997 (IEA)

Note: Transition economies are excluded.

Purchasing Power Parity (PPP)

¹TPES, Total Primary Energy Supply

Is prosperity possible without increasing energy consumption?

Drivers for Energy services demand (e.g. food, comfort, health, culture):

- Population and family size (#households)
- Wealth
- Consumption patterns: what to use, how to use energy

Figure 2.1 > Population without access to electricity by region

Note: Other includes Middle East, North Africa and Latin America.

Source: Energy Access Outlook 2017, International Energy Agency (2017): https://www.iea.org/publications/freepublications/publication/weo2017specialreport_energyaccessoutlook.pdf

Figure 3.1 Share of population with primary reliance on various cooking fuels by region

Progress has been limited on clean cooking access in many regions

the share of the population with access to clean cooking has risen from 35% in 2000 to 51% 2015, the number of people using LPG, gas and electricity has risen by 70% to almost 2 billion people.

Sources: IEA analysis; World Health Organization (WHO) Household Energy Database, (2016).

Figure 3.2 Share of population and number of people relying on biomass for cooking by region, 2015

Many parts of sub-Saharan Africa and Asia rely heavily on biomass for cooking

Sources: IEA analysis; WHO Household Energy Database.

Around 3 billion people cook using polluting open fires or simple stoves fuelled by kerosene, biomass (wood, animal dung and crop waste) and coal. Each year, close to **4 million people die prematurely** from illness attributable to household air pollution from inefficient cooking practices using polluting stoves paired with solid fuels and kerosene.

Energy intensity and carbon intensity concepts

Figure SPM.2: Relative global development of Gross Domestic Product measured in PPP (GDPppp), Total Primary Energy Supply (TPES), CO2 emissions (from fossil fuel burning, gas flaring and cement manufacturing) and Population (Pop). In addition, in dotted lines, the figure shows Income per capita (GDPppp/Pop), Energy Intensity (TPES/GDPppp), Carbon Intensity of energy supply (CO2/TPES), and Emission Intensity of the economic production process (CO2/GDPppp) for the period 1970-2004. [Figure 1.5]

IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: **Mitigation.** Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Developing countries

Figure 2.4 ▷ Primary energy demand and GDP by selected region in the New Policies Scenario, 1990-2040

Energy intensity: optimistic vision

Energy use per unit of GDP

Tonnes of oil equivalent per \$'000*

- \rightarrow Decreasing from the oil shocks
- \rightarrow Almost stable from first decade of the 20th century,

Energy Intensity in the UE

What does it mean *decoupling* economic growth from energy consumption?

Chart - Trends in energy intensity, gross domestic product and gross inland energy consumption

Between 1990 and 2017, a relative decoupling of gross inland energy consumption from economic growth occurred in the EU, energy intensity in the EU fell by 37% (1.7% per year) during this period.

Explore more on EU energy intensity here

Energy Intensity in the World

What does it mean *decoupling* economic growth from energy consumption?

GDP • TPES

The amount of energy used to generate a unit of GDP, also called energy intensity of the economy (TPES/GDP) decreased globally by 35% between 1990 and 2017, with large regional variations. In non-OECD this fall has been greater. For example, in China³, intensity more than halved (-70%) over this period.

✓ Increased levels of energy consumption ✓ Lack of access to energy ✓ Environmental risks ✓ Climate change ✓ Air pollution ✓ Energy security ✓ Adopt a long-term approach for investment

Energy challenges: 10 ... or more questions

- Has the world broken the link between rising economic activity, energy demand and energy-related CO2 emissions?
- ✓ Which fuels and technologies are poised to do well in the new energy order?
- ✓ Are there limits to growth for renewable energy?
- Staying below the 2 C climate change limit: what would be required in the energy system?
- ✓ What can the energy sector do to reduce air pollution?
- Energy investment is capital heading where it is needed?
- ✓ How might the main risks to energy security evolve over the coming decades?
- Are we on the path to achieving universal access to energy?
- Changing places: is global spending on energy subsidies shifting from fossil fuels and in favor of renewable energy sources?

How will the future of energy look like?

Figure 1.2 > World primary energy demand and energy-related CO₂ emissions by scenario

Achieving sustainable development goals requires a complete reversal of the historic relationship between economic growth, energy demand and emissions

Notes: Bubble size and numbers represent total primary energy demand. Gtoe = gigatonnes of oil equivalent or 1 000 Mtoe; Gt CO_2 = gigatonnes of CO_2 .

Source: World Energy Outlook 2018, IEA

How will the future of energy look like?

Figure 1.13 Global end-user energy spending by fuel and scenario

In the Sustainable Development Scenario, electricity takes over from oil as the main element of consumer spending on energy

World Energy Balance - 2050

Fuel	Transformation		End Use
Coal Natural gas 100 EJ	Direct Consumption 142 EJ		Industry 132 EJ
Biomass and waste 138 EJ	Power and co- generation plants	Electricity 130 EJ	Transport 102 EJ
Oil 116 EJ	316 EJ	Losses 174 EJ	Residential 92 EJ Services
Nuclear 75 EJ Hydro	Refineries and other transformati	Oil products 111 EJ	Non-energy use Conversion losses 194 EJ
CSP Geothermal Fossil: 43%	on 177 EJ	Losses	Losses: 30%