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What is missing?

aspects related with energy and climate change/sustainability not presented

Energy storage

Energy security

Energy-efficient and sustainable buildings

Energy efficiency in industry

Sustainable mobility

Energy systems modelling tools

Energy systems resilience to climate change

Energy communities and prosumers

Energy sustainability in cities, including supply chain
Natural resources and materials for energy systems
Environmental impacts of energy systems

Digital technologies for sustainable energy systems
Artificial intelligence and big data for energy transition
Public policies and smart regulation for sustainable and carbon neutral
energy system

Energy economics and markets

Social aspects of energy transition

(..)



* Energy storage
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* Energy storage

Figure 5: Typical solar PV production and battery charging/discharging schedule
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 Enerqy storage
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* Poway Unified School District in California
installed a 6 MWh BTM storage system. The
expected savings of this project are around
USD 1.4 million over 10 years, and the main
application is demand charge reduction (ENGIE
Storage, 2018).

* Advanced Microgrid Solutions (AMS)
completed a battery-based storage project for
Morgan Stanley in the US, which resulted in a
20% peak demand reduction, using 500 kW / 1
000 kWh Tesla Powerpack batteries. Peak
demand charges for commercial and industrial
consumers in the US can constitute up to 50%
of their bill. This system is integrated into the
existing building management system
(Colthorpe, 2017b).

Behind-the-meter (BTM) batteries are connected through electricity meters for
commercial, industrial and residential customers. BTM batteries range in size from
3 kilowatts to 5 megawatts and are typically installed with rooftop solar PV.

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA BTM Batteries 2019.pdf



https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_BTM_Batteries_2019.pdf

Energy storage

Figure 7: Household battery storage systems in Germany from 2013 to 2018
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In Germany, around 100 000 commercial and residential solar PV with BTM storage
systems had been implemented by summer 2018 (Rathi, 2018). This number is expected
to double by 2020 (Parkin, 2018).

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA BTM Batteries 2019.pdf



https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_BTM_Batteries_2019.pdf

* Energy storage

Stationary batteries (or grid scale) can be connected to distribution/transmission networks
or power-generation assets. Utility-scale storage capacity ranges from several megawatt-
hours to hundreds. Lithium-ion batteries are the most prevalent and mature type

« A draft study commissioned by the State * In Martinique, the output of a solar PV farm will be supported by a
of New York estimated over USD 22 2 MWh energy storage unit, so that electricity will be injected into
billion in savings if the state deployed the grid at constant power, limited to 40% of the rated PV power.

) This will establish solar PV as a predictable and reliable part of the
?bOUt 11 500 MW O_f energy storage In island’s energy mix, with no need for additional back-up generation
lieu of traditional grid solutions by 2025 to compensate for the intermittent nature of renewable energy

(NYSERDA, 2018). sources (DOE Global Energy Storage Database, 2019).

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA Utility-scale-batteries 2019.pdf



https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Utility-scale-batteries_2019.pdf

* Energy storage
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© Grid-scale @ Behind the Meter

IEA, Technology mix in storage installations excluding pumped hydro, 2011-2016, IEA, Paris https://www.iea.org/data-and-
statistics/charts/technology-mix-in-storage-installations-excluding-pumped-hydro-2011-2016



* Energy storage
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© Lithium-ion batteries @ Lead-based batteries © Flywheels @ Flow batteries Sodium sulphur batteries «~ Compressed air @ Supercapacitors @ Zincair @ Other

Manufacturing capacity for lithium-ion batteries is expected to increase threefold by 2022,
driven by the booming the EV market.

IEA, Technology mix in storage installations excluding pumped hydro, 2011-2016, |IEA, Paris https://www.iea.org/data-and-
statistics/charts/technology-mix-in-storage-installations-excluding-pumped-hydro-2011-2016



Energy storage
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Pumping storage: When there is excess capacity to produce electricity in periods of low
consumption, this solution is used to transfer electricity from one period to another, by
pumping water from a lower reservoir to another located at a higher height.

Portugal: around 2,5 GW [2020: 2,7 GW | 2030: 3,6 — 4,1 GW, PNEC 2019]



Energy storage

INNOVATION DIMENSIONS

@ ENABLING TECHNOLOGIES @ BUSINESS MODELS @ MARKET DESIGN @ SYSTEM OPERATION

1 Utility scale batteries 12 Aggregators 17 Increasing time 25 Future role of distribution

2  Behind-the-meter 13 Peer-to-peer electricity granularity in electricity system operators
batteries trading markets 26 Co-operation between

. . 14 Energy-as-a-service 18 Increasing space transmission and

3 Electrlc-veh.lcle . . granularity in electricity distribution system
smart charging 15 Community-ownership markets operators

4 Renewable models 19 Innovative ancillary .
power-to-heat 16 Pay-as-you-go models services 27 Advanced forecasting

5 Renewable 20 | Re-designing capacity of variable rengwable
power-to-hydrogen markets power generatlon'

6  Internet of Things 21 Regional markets 28 Innovative operation

of pumped hydropower

22 Time-of-use tariffs storage

23 Market integration
of distributed energy

9  Renewable mini-grids resources
10 Supergrids 24 Net billing schemes

Artificial intelligence
and big data
8  Blockchain 29 Virtual power lines

30 Dynamic line rating

1  Flexibility in conventional
power plants

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA BTM Batteries 2019.pdf
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* Energy efficiency

Figure ES.2

EU progress towards 2020 and 2030 targets on climate and energy
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https://www.eea.europa.eu/publications/trends-and-projections-in-europe-1

* Energy efficiency

Figure 4.2 Final energy consumption and linear trajectory levels to reach 2020 targets, 2017 and 2018
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* Energy efficiency

. Rate achievable via the IEA's Efficient World Strategy
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IEA, Global improvements in primary energy intensity, 2000-2018, IEA, Paris https://www.iea.org/data-and-
statistics/charts/global-improvements-in-primary-energy-intensity-2000-2018

Global energy efficiency improvements are slowing

In 2018, primary energy intensity - an important indicator of how much energy is used by
the global economy - improved by just 1.2%, the slowest rate since 2010. This was
significantly slower than the 1.7% improvement in 2017 and marked the third year in a
row the rate has declined. It was also well below the average 3% improvement consistent
with the IEA's Efficient World Strategy, first described in Energy Efficiency 2018.



* Energy efficiency

i Energy efficiency
) The first fuel of a sustainable global energy system

2015 2016 2017 2018

IEA. All Rights Reserved

© Actual energy productivity bonus @ Additional bonus from 3% improvement rate

IEA, Global energy productivity bonus, actual and if energy efficiency had improved at 3%, IEA, Paris https://www.iea.org/data-
and-statistics/charts/global-energy-productivity-bonus-actual-and-if-energy-efficiency-had-improved-at-3

The 1.2% improvement in energy intensity equated to around $1.6 trillion more GDP
for the amount of energy used compared to 2017.

However this figure could have been S4 trillion — an amount greater than the size of
the German economy — had energy intensity improved at 3% every year since 2015.



* Energy efficiency

2012 2013 2014 2015 2016 2017 2018

IEA. All Rights Reserved

Longer-term structural factors are also playing a part in the slowdown. While
technologies and processes are becoming more efficient, structural factors,
like changes in transport modes and more building floor area per person, are
dampening the impact of these technical efficiency gains on energy demand,
and slowing global energy intensity improvements.



* Energy efficiency

Factors influencing residential buildings energy use, 2015-2018 Factors influencing passenger transport energy use, 2015-2018
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o Cresterusecfappliances - Morefloorareaperperson vehicle efficiency, energy use continues
In residential buildings, structural changes to grow. Amongst other factors, sales of
have consistently matched or outpaced new, more efficient vehicles have slowed,
efficiency gains since 2014. These include consumers prefer larger cars, and typical
increased device ownership and use and a vehicle occupancy rates have fallen.

significant growth in average per-capita
residential floor area in all economies.



* Energy efficiency
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IEA, Share of final energy use covered by mandatory efficiency policies, 2010-2018, IEA, Paris https://www.iea.org/data-and-

statistics/charts/share-of-final-energy-use-covered-by-mandatory-efficiency-policies-2010-2018 IEA. All Rights Reserved

© Covered @ Notcovered

The coverage of mandatory efficiency policies increased in 2018, but this was almost exclusively due to
existing policies. Meanwhile the strength of mandatory policies increased by less than 0.5%, slightly higher
than the previous two years, though still below the five-year historical average, indicating more can be
done to ensure mandatory policies are effective. The coverage and strength of energy efficiency obligation
programmes remained largely unchanged.



* Energy efficiency
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IEA, Total global energy investment, 2017-2020, IEA, Paris https://www.iea.org/data-

and-statistics/charts/total-global-energy-investment-2017-2020 IEA. All Rights Reserved

© Fuelsupply @ Powersector « Energyenduse and efficiency « Change from previous year

Energy investment is set to fall by one-fifth in 2020 due to the Covid-19 pandemic



* Energy efficiency
the case of buildings

In EU roughly 75% of the building stock is energy inefficient, yet almost 80% of
today’s buildings will still be in use in 2050.

Energy consumption in EU households

Space heating Lighting
: and
appliances

14.4%

Water heating

®14.8%

cooling
®0.3% %
oG~

Data for 2017 ()

ec.europa.eu/eurostatil
Households: 27.2% of final energy consumption in the EU (2017).
natural gas (36.0%) | electricity (24.1%) | Renewables (17.5%) | oil products (11.2%)
and derived heat (7.6%) | coal products (3.3%)



* Energy efficiency
the case of buildings

Several measures in place:

« Energy Efficiency Directive

* Renovation (rehabilitation)

* Energy Performance Certificates

« Smart meters (really smart)

« Mobilise retail consumers (through dedicated Apps: www.cloogy.pt/)
* Funding schemes

« energy performance contracting schemes (EPCs) offered by
Energy Service Companies (ESCO),

« Green bonds
« State-aid funds (Fundo para a Eficiéncia Energética, PT)
« Signal Prices (pay as you consume)



« Energy efficiency: from the house to the district

Optimisation

Towards
Positive Energy
Districts for
sustainable
urbanisation

Figure 5: Definition of Positive Energy Districts

https://setis.ec.europa.eu/system/files/setplan smartcities implementationplan.pdf



https://setis.ec.europa.eu/system/files/setplan_smartcities_implementationplan.pdf

« Energy efficiency: from the house to the district
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Figure 6: Key challenges and needs for deploying PEDs

https://setis.ec.europa.eu/system/files/setplan smartcities_implementationplan.pdf



https://setis.ec.europa.eu/system/files/setplan_smartcities_implementationplan.pdf

« Sustainable mobility

Europe must reduce emissions from transport further and faster.

Transportaccounts foraquarter of the Union’s greenhouse
gas emissions and these continue to grow. The Green
Deal seeks a 90% reduction in these emissions by 2050.

90%

reduction
greenhouse gas
Share of Greenhouse Gas Emissions emissions in
by Mode of Transport (2017) transport by 2050
Railways Others
0.5% 0.5%
Waterborne
transport 2 =
- o
13.4% >
Civil Aviation—s % Road S £
13.9% ' Transport = p—

71.7% © Go digital

- Automated mobility and smart traffic
management systems will make
transport more efficient and cleaner.

Source: Statistical pocketbook 2019

- Smart applications and ‘Mobility as
EU, Sustainable Mobility Factsheet (2020) a Service’ solutions will be developed.



« Sustainable mobility

Single European
Sky reform will

© Use different modes of transport
help to cut up to

More freight should be transported by rail or water. And the o/

Single European Sky should significantly reduce aviation 1 o 0

emissions at zero cost to consumers and companies. TN of air transport
emissions.

e Prices that reflect impact on environment

2 7

Ending subsidies Extending emissions Effective road Reducing free
for fossil-fuel trading to the pricing in the EU allowances to
maritime sector airlines under

emissions trading

EU, Sustainable Mobility Factsheet (2020)

NA-02-19-958-EN-C
NA-02-19-958-EN-N



« Sustainable mobility

Global electric car stock, 2010-2019
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ChinaBEV @ China PHEV Europe BEV @ Europe PHEV United States BEV United States PHEV @ OtherBEV @ Other PHEV ® World BEV GIobaI EV Outlook 2020. IEA
7

Sales of electric cars topped 2.1 million globally in 2019, surpassing 2018 — already a record year — to boost
the stock to 7.2 million electric cars.1 Electric cars, which accounted for 2.6% of global car sales and about
1% of global car stock in 2019, registered a 40% year-on-year increase.



« Sustainable mobility

Private electric vehicle slow chargers by country, 2019
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Publicly accessible electric vehicle fast chargers by Open
country, 2019 2
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Japan: 3%
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Global EV Outlook 2020, IEA

In 2019, there were about 7.3 million chargers worldwide, of which about 6.5 million were private, light-
duty vehicle slow chargers in homes, multi-dwelling buildings and workplaces. Convenience, cost-
effectiveness and a variety of support policies are the main drivers for the prevalence of private charging.



« Sustainable mobility: what will be the role of H2?

 cerca de 10.000 veiculos vendidos (2014-
Out2019)

OUTROS FABRICANTES

Hyundai, Honda, Mercedes-Benz
(ligeiros de mercadorias/vans), Ford
(vans)

FONTE: Toyota, 2019

TRL: 7-8

* + de 10 M kms percorridos até Set2019
DIVERSOS FABRICANTES

Daimler (fuel cell da Ballard Power
Systems), Thor Industries e Irisbus (fuel
cell da UTC Power), Caetano Bus (fuel cell
Toyota)

FONTE: FuelCell Bus e CaetanoBus, 2019



« Sustainable mobility: what will be the role of H2?

TRL: 7 TRL: 5-6

e Alstom ilint. opera desde 2018 na

Alemanha em trafego de passageiros * nesta fase apenas protdtipos funcionais
regular OUTROS FABRICANTES
OUTROS FABRICANTES Boeing, Pipistrel, Zeroavia
CRRC TRC (Tangshan) produziu em LMG Marin and partner Westcon
2017 um sistema ligeiro que opera Power & Automation, Hydra

nesta cidade chinesa

FONTE: Alstom e Ballard Power Systems, 2019 FONTE: Boeing e Norled, 2019



Energy sustainability in cities (the right scale?)

(@) @

more than half. of 80% of the world’s two-thirds of primary 70% of total energy-
global population GDP in 2013 energy demand related CO2 emissions

70% in 2050

2050?
2100?

The History of Urbanization, 3700 BC - 2000 AD: htips:/ lwww,ymlmbe,mmmal;gh?y—y[{ [YXujI7sl


https://www.youtube.com/watch%3Fv=yKJYXujJ7sU

* Energy sustainability in cities

High resolution data integration
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Energy sustainability in cities
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* Energy sustainability in cities

. U profile (soft): Fuel Poverty
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Gouveia, J.P., Seixas, J. (2016). Unraveling electricity consumption profiles in households through clusters: Combining smart meters

Yss CENSE
and door-to-door surveys. Energy and Buildings. 116, 666—676. “}



* Energy sustainability in cities

RN

Equipments and -

energy services

10 building
typologies

Mobility

e By type of fuel
* By age (Euro Norm)
* By origin-destiny matrice

4 city zones
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* Energy sustainability in cities

o (Real) Time slices

Based on the quality of information that we had: Big data - 32 000 smart meter
information on residential and avrious sectors electricity consumption at 15 minutes and

also PV powerplants electricity production profiles;

18 timeslices/year

* Seasons: Summer; Winter and

interseasonal

* Week days and week ends

* Day, night and peak

DAY 0:00 6:00 12:00 18:00

PV theoretical production
— Residential

YEAR 1 2 3 4 5 6 7 8 9 1011 12

University and Schools — Energy
— Water Distribution Y%t} CENSE
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ntegrative Smart City Planning

* Energy integrated modelling tools

www.insmartenergy.com

* TIMES (The Integrated MARKAL-EFOM System) model generator was developed as part of the IEA-
ETSAP (Energy Technology Systems Analysis Program), which uses long term energy scenarios to

conduct in-depth energy and environmental analyses (Loulou et al., 2004).

* TIMES is a technology rich, bottom-up model generator, which uses linear-programming to produce a
least-cost energy system, optimized according to a number of user constraints, over medium to long-
term time horizons. In a nutshell, TIMES is used for, "the exploration of possible energy futures based

on contrasted scenarios" (Loulou et al., 2005).

Global
ETSAP-TIAM Regional
15 regions JRC-EU-TIMES model National
S 7 28 European states TIMES_PT
g ;; I Loecal
(74 S e = fi=——— TIMES_EVORA

25

+* PNAC

LI

Available at: http://bookshop.europa.eu/en/the-jrc-eu-times-model-
phLDNA26292/?CatalogCategoryTD=YysKABsty0Y AA AEjqJEY4e5L, ¢
QU
{5} CENSE

More information at: http://www.iea-etsap.org/



* Energy integrated modelling tools

37 of 5

Energy Prices, Resources Availability

City Energy Reference System
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Integrated City Energy Planning framework and major outcomes e smarciypaming



* Energy integrated modelling tools
=» Generate Sustainable Future Energy (realistic) pathways

by integrated city’s energy system modeling [TIMES_city] to achieve the targets by

2030:

MOBILITY

=  Expand the individual mobility soft-modes

= Prohibit cars in cities’ historical centers

= Expand the use of electric vehicles (5-10% of vehicles)

HOUSEHOLDS

" 50% of households equipped with solar generation (PV and thermal)

= Smart-biomass heating systems (60% of fireplaces)

= Energy efficiency measures in 70% of households (double glazing, insulation,
shadowing)

SERVICES BUILDINGS

= Reduce 30-50% of energy consumption & Demo on Zero Energy Building

PUBLIC SERVICES

= Reduce 30% waste generation

= |mprove energy efficiency in waste water treatment plants

= Public lighting with 100% of LEDs

ENDOGENOUS POWER PRODUCTION

= 100% local power production |USMAIR]




« Local Stakeholders Participation for energy planning

1) Future technologies and measures towards low-carbon city by

8 2030 generated by integrated city’s energy system modeling
(TIMES)

2) Assessed through multi-criteria in 2 live-workshops with public

bodies, private companies, NGOs and city planners and decision-
makers.

=» Priorities for development of Sustainable Energy
Action Plan including financing possibilities INGIMI RJ



« Local Stakeholders Participation for energy planning

— Results presented and classified according to each criterion weight

— Stakeholders asked to review weights, if necessary

Private sector
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What is the impact on natural resources use? And on materials use?
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