Ciências Físico – Química A 10° ano Teste n°2

Nome:			
N°:	turma:	Classificação:	

- **1.** Utilizando um disco eléctrico, de potencia 600 W, aqueceram-se 200g de leite, durante 60s, tendo a sua temperatura aumentando de 20°C para 45°C. A capacidade térmica mássica do leite é $4.0 \times 10^3 J/kg$.
 - 1.1 Qual a variação de energia interna do leite?

$$\Delta U = Q_{absorvido}$$

$$Q_{absorvido} = mc\Delta\theta$$

$$\Delta\theta = 45 - 20 \Leftrightarrow \Delta\theta = 15$$

$$\Delta U = 200 \times 10^{-3} \times 4, 0 \times 10^{3} \times 15 \Leftrightarrow$$

$$\Leftrightarrow \Delta U = 2, 0 \times 10^{4} J$$

1.2 – Qual o valor da energia fornecida pelo disco?

$$E_{fornecida_pelo_disco} = P \times \Delta t \Leftrightarrow$$

 $\Leftrightarrow E_{fornecida_pelo_disco} = 600 \times 60 \Leftrightarrow$
 $\Leftrightarrow E_{fornecida_pelo_disco} = 3,6 \times 10^4 J$

1.3 – O que aconteceu à energia que n\u00e3o foi absorvida pelo leite?

A energia que não foi absorvida pelo leite foi transferida para o recipiente onde o leite foi aquecido e para o meio exterior.

1.4 – Qual o rendimento do processo?

$$\eta = \frac{E_{util}}{E_{fornecida}} \times 100$$

$$\eta = \frac{2.0 \times 10^4}{3.6 \times 10^4} \times 100 \Leftrightarrow$$

$$\Leftrightarrow \eta = 56\%$$

2. Faça a correspondência correcta entre as duas colunas.

A – quando se aquece a sopa no microondas, a sua energia interna aumenta devido à transferência de energia com	1. trabalho
B – quando se comprime o gás contido numa seringa, a sua energia interna varia devido à transferência de energia sob a forma de	2radiação
C – quando se aquece gás, contido numa ampola, a sua energia interna varia devido à transferência de energia sob a forma de	3calor
D – a batedeira eléctrica utilizada para bater a massa de um bolo, faz aumentar a energia interna deste, devido à transferência de energia sob a forma de	

Α	2
В	1
С	3
D	1

3. Assinale as afirmações incorrectas.

A – a condução de calor so ocorre nos metais.	X
B – a convecção ocorre devido à expansão dos fluidos.	
C – os materiais sólidos também transferem calor através da convecção.	X
D – num metal que está a ser aquecido, os corpúsculos com mais energia cinética deslocam-se rapidamente de uma extremidade para a outra.	X
E – os gases ficam mais densos quando arrefecem.	

4. A energia interna de um sistema pode variar com o calor, trabalho ou radiação transferida para o sistema.

Indique para cada uma das situações seguintes, como varia a energia interna do sistema.

a. As fatias de pizza são mantidas quentes através de lâmpadas de infravermelhos.

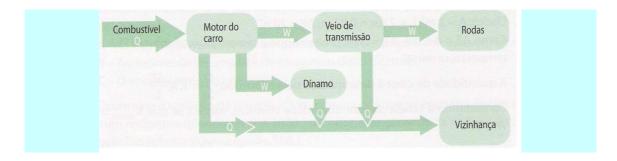
A variação de energia interna aumenta com a quantidade de energia transferida pela radiação da lâmpada de infravermelha. (W=0 e Q=0).

b. Aquecimento de uma lata de spray num disco eléctrico.

A variação de energia interna aumenta com o calor, uma vez que $\Delta E_i = Q + W + R$; R=0; e W=0, porque não há variação de volume. Assim, $\Delta E_i = Q$

c. O esvaziar lento de um pneu.

Não se verifica a variação da energia interna, uma vez que o processo é lento e não há variação de temperatura. Assim, $\Delta E_i = 0$, podendo concluir que:


$$\Delta E_i = Q - W + R \ e \ R = 0$$
$$0 = Q - W \Leftrightarrow Q = W$$

5. Determine a variação de energia interna de um gás que se encontra num recipiente quando recebe 2000 J de calor, mas expande-se realizando um trabalho sobre o sistema igual a 500 J.

 $\Delta E_i = Q + W + R$; como não há emissão ou absorção de radiação R = 0. O calor Q = 2000 J, visto que é recebido pelo sistema. O trabalho W = -500 J, uma vez que é realizado pelo sistema sobre a vizinhança. $\Delta E_i = 2000 - 500$

$$\Delta E_i = 2000 - 500 \Leftrightarrow$$

 $\Leftrightarrow \Delta E_i = 1500 J$

- **6.** Um carro é uma máquina térmica.
- **a.** O que entende por maquina térmica? Máquina térmica é um sistema que recebe energia como calor e transfere-se como trabalho sobre o exterior.
 - **b.** Faça um diagrama que traduza o balanço energético do carro.

c. Determine o rendimento do carro, que dissipa 160kj, quando o combustível consumido lhe fornece 250kj como calor.

$$\eta = (1 - \frac{|Q_f|}{Q_q}) \times 100$$

 $Q_f = calor \ recebido \ da \ fonte \ quente$

 $Q_q = calor \ cedido \ à fonte fria$

dados:

$$Q_f = 250 \ Kj = 250 \ 000 \ J$$

$$Q_q = 160 \text{ Kj} = 250 000 \text{ J}$$

$$\eta = 1 - \frac{160000}{250000} \times 100 = 36\%$$