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Abstract

Harmonic and musical wavelets were introduced by DE Newland in 1994, and have their spectrum tightly defined, therefore
greatly reducing spectral leakage that may disturb signal frequency analysis. We have explored the ability of these wavelets to
perform detection and quantification of ventricular late potentials (VLP) through our multiresolution time-scale method of energy
comparison between the ST and TP segments of the ECG. Since reduction of spectral leakage improves the method’s reliability,
Newland wavelets provided better results than Daubechies wavelets in our study cases. The only drawback is the comparatively
reduced time resolution of Newland wavelets. This required us to concatenate a number of ST segments to form a longer data set
that is more representative of the high-resolution ECG (HR-ECG) of a patient than one individual beat. This approach may also
be considered for other applications in the HR-ECG field. The spectral properties of the Newland wavelets play a major role in

‘the improvement in our results. © 1999 IPEM. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Ventricular late potentials (VLP) are cardiac
microvolt signals arising from the delayed inhomo-
geneous propagation of the depolarisation wave through
ventricular tissue. They have diagnostic value as predic-
tors of malignant arrhythmias and cardiac arrest. Tra-
ditional time analysis methods excessively depend on the
noise level and the location of the QRS limits [1,2].
Time—frequency methods are a promising modern alter-
native still under scrutiny, for which the spectrogram [3]
and the Wigner—Ville methods have mainly been used
[4]. The spectrogram’s limitations are the low resolution
and dependence on the window type, while the Wigner—
Ville Transform exhibits cross terms. Wavelets are one
- of the most recent tools adopted for high-resolution ECG
- (HR-ECG) research. Reports have pointed out the
superior ability to discriminate low energy transients
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such as VLPs [4,5]. We present a quantitative method
based on harmonic and musical wavelets [6—8]. Our HR-
ECG acquisition set-up had the following parameters:
ADC effective resolution, 12 bits; group delay error,
0.77%; noise level below 1 pV; final stage sampling fre-
quency, 2.2 kHz; and bandwidth, 550 Hz.

2. Discrete Wavelet Transform (DWT) with
harmonic and musical wavelets

Newland wavelets are given by Newland [8]:
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For m = 2 and n = 2*! the harmonic wavelet family
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is obtained, in which case it makes more sense to use
the terminology term level (m,n) instead of wavelet level
j. Wavelets will be translated by steps k/(m — n) where
k must be a constant. Unlike the Daubechies wavelets
[9], these have their spectrum tightly confined, thus dras-
tically reducing spectral leakage, although with the sac-
rifice of time resolution by a factor of two. For m =

2712 and n = 20+ Y12y being a real integer, the musi-
cal wavelet family is obtained, for which each octave is
divided into 12 steps as in the musical scale. The fre-
quency resolution is greatly increased with correspond-
ing reduction of time resolution. For instance, a real sig-
nal sequence with 2048 samples would have 512
samples in the higher resolution level of the scalogram.
This 1/4 resolution reduction is explained as follows: one
half is due to the half of the transform being the complex
conjugate of the other half, therefore conveying no new
information; the other half is due to the way the scalog-
ram is obtained where the coefficients of the last decade
correspond to the higher resolution and the others group
behind these. The transform is obtained through the
Newland ‘sandwich’ algorithm [6], comparable in
efficiency to the Mallat tree algorithm [10]. The multi-
resolution signal at a certain frequency level is obtained
by performing the Inverse Discrete Wavelet Transform
with the coefficients pertaining to that level only.

3. VLP quantification and multiresolution scheme

Time—frequency analysis -has been applied to VLP
quantification. Haberl et al. [11] proposed a figure, the
factor of normality (FN), obtained by a correlation pro-
cess in the frequency domain between the Fourier spec-
trum of each time slice of the ST segment with the aver-
age spectrum of the last portions of the ST segment
(where no VLPs are supposed to be present) or the TP
segment. A correlation coefficient is obtained that, by
area comparison, produces the FN figure which quanti-
tatively accounts for the presence of VLP. Other authors
have used the same procedure with the Wigner—Ville
Transform instead of the Fourier Transform [12]. Theor-
ctically, a person without VLP would have FN = 0%.
Unfortunately, in practical situations this is normally not
so. Values as high as 40% have been considered normal.
Thresholds vary substantially between research groups
that use the same method, and have sometimes been

established empirically based on clinical experience. -
Ultimately, the key factors in this variation are the sensi- -

tivity and noise level of the acquisition set-up. A variety
of acquisition systems is in use. It is quite possible that
for a patient undergoing the same VLP test methodology
(say the spectrogram) in two facilities, the results could
vary to such an extent that different diagnosis and conse-
quent treatment could follow.

In this work we introduce a VLP quantification meth-

odology based on the concatenation of a number of suc-
cessive ST segments, typically 10-20, to build a longer
data set necessary to overcome the low time resolution
of musical wavelets [12—-14]. Concatenation continues
until 2048 samples are available at a sampling frequency
of 2.2 kHz. We observe that this signal may more accu-
rately relate the HR-ECG to the patient’s condition,
rather than one individual beat or the averaged signal.

To perform the multiresolution analysis scheme
explained below, concatenation was also applied to the
TP segment. The edges of the concatenated signals may
introduce new high frequency spectral components that
are artefacts. Since the ST segments are, at the microvolt
level, somewhat concave we have inverted the polarity
of every second segment, therefore obtaining a low fre-
quency sine-wave-like baseline, easily retained in the
low scales of the wavelet transform. This signal is shown
in the upper part of Fig. 1. Polarity inversion also greatly
reduces the slope arising from the concatenation process.
The lower plot in Fig. 1 represents the same procedure
for the TP segment for which no polarity inversion was
performed, since each individual TP segment 1s a
smoother signal. The generated slope was digitally
removed, a simple detrending operation consisting of
subtracting a best straight-line fit of the data.

Our multiresolution scheme is based on the energy
comparison between the ST (or concatenated ST) and
the TP (or concatenated TP) segments of the ECG. Here-
after we will use these terms interchangeably. The TP
segment is used as a reference since increased energy in
the ST segment is interpreted as indicating the presence
of VLP. The energy of the VLP themselves is as low as
1% of the overall energy of the ST segment when they
are present. Signal DC and low frequency components
such as the typical ST slopes contain most of the ST
energy. | |

Using wavelets, we are able to observe the signal at
different resolutions, discarding the low frequency scales

“ where most of the unwanted energy lies. Fig. 2 shows

the method applied to one beat of a patient seven days
after myocardial infarction. The left column relates to
the TP segment only, which is shown at the top with
6.396 uV (RMS,...;).- Most of the energy content of the
TP segment is 50 Hz interference and this 1s quite vis-
ible. We allowed this interference level for testing pur-
poses, although we could easily reduce it drastically in
the hardware. All the signals below this are the result of
the harmonic wavelet decomposition of the TP signal.
The frequency bands and the RMS values are shown
above the individual plots. The following relation holds:

RMS o = \/ S (RMS), 2)

where (RMS), is referred to each multiresolution signal.
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Concatenated ST segments, with polarity inversion of every second segment.
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(a): Concatenated TP segments. (b): Detrended Concatenated TP segments.
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Fig. 1. Concatenated ST and TP segments.

In the right column of Fig. 2 the ST segment is rep-
resented 1n exactly the same manner. For instance, we
observe that in the 137.8-275.6 Hz band the RMS value
of the TP segment is 1.214 wV, whereas the correspond-
ing value for the ST segment 1s 1.572 wV, an increase
of 29.52% due to VLP activity. The increase goes further
to 56% in the 68.89-137.8 Hz range, therefore indicating
that this band retains most of the VLP energy. The FN
is estimated by:

RM 2
STP) % 3)

FN 100( RMSe
in" the scale where the larger increment occurred. This
formula 1s not the only possible approach to the FN esti-
mation. It was intuitive for us, given the definition of
energy of an electrical signal. For a patient without VLLP
ideally RMSs;y = RMS+p and therefore FN = 0%. The
FN obtained in Fig. 1 is 41%. This patient had a type
III VLP [15], hardly detected by the Simson method.
The FN value 1s printed close to the low frequency resi-
due, due to the shortage of available space in the overall
plot. The LF residue (0-34.45 Hz) is not accounted for
in the FN calculation since VLP should not be present.
The HF residue (275.6—-1102 Hz) is also discarded since
it is mainly muscle noise and other HF interference. In

this way, we are searching for VLP in a band that
extends from 34.45 to 275.6 Hz (260.5 Hz for the musi-

cal wavelet), which includes the problematic 50 Hz line
interference signal. Table 1 shows the RMS values of the
VLP that are obtained by subtracting, in each level, the
RMS values of the TP and the ST segments, and its dis-
tribution over the frequency bands. The percentage of
VLP energy is obtained relatively to the total RMS of
the ST segment shown in the top right corner. VLP RMS
values seem to be rather low, but peak values may reach
around 10 times more. . |

In Fig. 3 the same methodology, for the same patient,
is applied using musical wavelets and concatenated sig-
nals as explained above. Again we note that the low fre-
quency components, namely, those created by the con-
catenation process, are retained in the low frequency
residue that is discarded in the FN computation. Table
1 summarises the results. As the frequency resolution is
improved, it 1s possible to determine that most of the
VLP energy lies in the band 68.89-97.96 Hz, a substan-
tial refinement relative to the results obtained with har-

monic wavelets. This leads to a decrease in the FN that

halves its value to 20%, a value in better agreement with
the patent’s previously known condition. Table 1 also
shows the VLP estimation with the Daubechies DS
wavelet [12—-14]. The spectrum of Daubechies wavelets
is not confined to each octave band. A great amount of
overlapping occurs and each octave band exhibits rep-

licas of decaying amplitude in the upper frequencies.

Feeding the Mallat algorithm with white noise and
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Fig. 2. Harmonic wavelet multiresolution analysis of the HR-ECG of a patient.
Table 1 compromises the frequency analysis, since the wavelet

VLP estimation

S

54.3

Frequency Estimated % of VLP % of TPto FN %
band (Hz) VLP (V- energy ST increase
RMS)

VLP estimation with harmonic wavelets

© 137.8-275.6  0.358 5.0 29.5 41
68.89—-137.8  0.465 6.5 56.0
VLP estimation with musical wavelets -
137.8-194.8 0.242 0.9 19.3 20
97.96-137.8 0.592 3.8 63.6
68.89-97.96  1.026 3.8 122.5
VLP estimation with Daubechies D8 wavelet
137.82 0.542 7.6 68

*Central frequency.

inspecting the spectra of the different multiresolution
signals can easily confirm this. This being so, part of the
“energy of a particular Mallat multiresolution signal is
spread over the others bands. This spectral leakage

level no longer truly represents a frequency band (is
rather a central frequency), a concept so important in
signal analysis. The FN computation is also affected
since the upper wavelet levels, where VLPs are present,
are corrupted with some energy coming from the lower
level where 50 Hz interference lies. This behaviour
explains the highest FN value obtained of 68%.
Although detailed results are presented here for one
patient, the method gave positive and quantified VLP
results in 11 patients with previously recognised VLP
related cardiopathy. All these patients had been tested
for VLLP activity with the Simson protocol and only three

~ were found positive. The patient in question was tested

with the Simson protocol with a negative result. Since
we were about to set up a method more sensitive than
the classical methods for VLP detection, we submitted
this patient to both our time—frequency and wavelet
methods, and they produced clear positive results. We
then went back and closely observed, in the time
domain, the HR-ECG of the patient and found out that

%
%
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the VLLP was the difficult type II [15]. Furthermore, this
patient had had a heart attack a few days after having
tested negative for VLP with the Simson protocol. There
seemed to exist pretty strong medical evidence that this
patient had VLP that was not backed up by the Sim-
son protocol. |

This patient became our reference study case, since in
this paper we are concerned with the complexities of
wavelet analysis of the HR-ECG and so we focused on
a case that probably represents something of a ‘worst
possible scenario’. In addition, 17 normal subjects were
used for reference and calibration purposes of the experi-
mental set-up. |

4. The interference problem

As can be observed in Figs. 2 and 3, the level of 50 Hz
interference is substantial and not usually allowed in
HR-ECG. Although we could have reduced it at the
hardware level, we decided not to do so for testing pur-
poses. Since this interference tends to be stationary dur-
ing one heartbeat, it will appear in TP and ST segments
with similar energy levels. As the method works by com-
paring energy levels, this interference tends to cancel in
the final result. At this point the only problem resides in
the sine wave phase difference between the ST and TP
segments that depends on the T wave duration and 1s
typically around 30°, equivalent to 100 ms or 5 sine per-
iods. It may then happen that the starting values and
slopes of this potential in both segments are different.
The wavelet algorithm sees this discontinuity as a high
frequency signal feature just as the FFT circular algor-
ithm would, spreading its energy over the higher scale
levels and therefore disturbing the estimations. Our cur-
rent work includes the study of the signals edge effect
and the wavelet transform algorithms. Nevertheless,
bringing the 50 Hz interference to normal low levels
practically eliminates the problem, and our study here
concerns the worst conditions possibly occurring in a
clinical set-up. |

Our method requires stationary noise interference in
ST and TP segments, which is a time window of around
500 ms. In this window we found that breathing muscle
noise keeps essentially stationary in the majority of the
beats, except possibly in cases where particular breathing
patterns occur. The beats affected by non-stationary
interference are discarded. Also the ST and TP segments
need not be consecutive. As the breathing signal 1s over-
all periodic, the segments under study may be picked up
by searching the HR-ECG record for areas where breath-
ing muscle noise 1s periodically similar.

5. Conclusions

In this report we are not attempting to validate the
clinical efficiency of our method, for which it would be
necessary for a comprehensive clinical trial to be carried
out by different research groups to be able to compare
results. Rather, at this stage we are introducing a method
that gave positive and quantified VLP results in 11
patients with previously recognised VLP related cardi-
opathy. All these patients had been tested for VLP
activity with the Simson protocol and only three were
positive. Moreover, we were able to estimate the VLP
energy distribution in the wavelet frequency levels with
a great degree of accuracy.

The HR-ECG 1s a highly non-stationary signal. Noise
interference such as muscle noise and power line har-
monics add complexity to the task of detecting and quan-
tifying the VLP signals which also have a degree of
unpredictability. Therefore, clinical evaluation of any
VLP method requires substantial amounts of data rep-
resenting a variety of clinical set-ups, and this is bound
to be a lengthy process. It took around one decade to
reasonably assess the Simson method despite its wide
clinical use.

For our 11 patients, our method gave superior results
and showed remarkably low sensitivity to noise. Else-
where [12-14] we reported the use of time—frequency
representations with the spectrogram and the Wigner—
Ville transform to assess the results of our method of
VLP analysis. We found that the multiresolution method
proved to be less sensitive to the noise interference and
produced FN values that closer depict the patients’ state
in our study cases, known through their previous medi-
cal history. |

The 50 Hz interference 1n the low levels of the wave-
let transform, if too high, may disturb the method,
although the same level of interference would be much
more disturbing of the time—frequency method and
would render the Simson method impracticable.

We also used Daubechies wavelets and found that the
Newland musical wavelets are more suitable for our
method, due to their confined spectra that reduces spec-
tral leakage. |

We are currently looking further to apply other wave-
let transform algorithms for refinement of time—ire-
quency resolution and reduction of the signal- edge
effects.- Also under development is an algorithm that
automatically selects intervals where interference 1s
kept stationary.
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