Business Management

Financial Calculus

1st Semester
2022-2023
Prof. Célia Costa Cabral

The Time Value of Money

- Time Value of Money:

i) today: the lower the prices, the more Money can buy
ii) in time: interest rate (opportunity cost) $r+\Pi$
(real interest rate + inflation)

- Notation:
V_{0} - Value of capital invested in moment 0.
V_{n} - Value of capital in a future moment n.
n - number of time units between the initial moment 0 and the present moment
i- interest rate per period of time.

Capitalization

- Compound interest regime: Financial Application that yields interest payment on the initial capital AND on previous earned interest.
V_{0} initial capital (period 0)
$V_{1}=V_{0}(1+i)$ is the accumulated capital after one period of time
$V_{2}=V_{1}(1+i)=\left[V_{0}(1+i)\right](1+i)=V_{0}(1+i)^{2}$ is the accumulated capital after two periods of time

$$
V_{n}=V_{0}(1+i)^{n}
$$

Accumulated value after n periods of time (under a compound interest regime)

Capitalization

- Simple interest regime: Financial application that yields interest payments on the initial capital only.

Ex.

$$
\begin{aligned}
& V_{1}=V_{0}(1+i) \\
& V_{2}=V_{1}+V_{0} i=V_{0}+2 V_{0} i=V_{0}(1+2 i)
\end{aligned}
$$

$$
V_{n}=V_{0}(1+n i)
$$

Capitalization

- Capitalization (def):

Result of a financial application of capital over a given period of time during which interest is earned.

- Final or Future Value: Total value in a future moment.
$V_{t}=V_{0}(1+i)^{t}$ Future value (in moment t) under a compound interest regime

Discounting

- Dlscounting (def):

Amount today that is equivalente do a certain value in a future moment (knowing that interest will be earned between today and the future moment).

- Present Value: The value today of a future amount to be paid/received.

$$
E x . V_{0}=V_{t}(1+i)^{-t}
$$

$$
\text { or } V_{0}=\frac{V_{t}}{(1+i)^{t}}
$$

Interest Rates

- Proporcional interest rate: The interest rate that results from dividing the annual interest rate by the number of periods existent in one year.
\rightarrow i periodic: i_{k};
\rightarrow number of periods of time which occur in one year: k

$$
i_{\text {period }}=i_{a} / k
$$

Ex. ${ }^{\circ} \quad i_{m}=i_{a} / 12$ will be the monthly interest rate that is proportional to i_{a}

- Equivalent interest rate: is the interest rate that yields the same accumulated value over same time period (generating an equivalent amount in the end of the period). Example: which will be the monthly interest rate (i_{m}) that is equivalent to an annual interest rate i_{a} ? It is the one that will yields the same accumulated capital at the end of one year (or 12 months)

$$
\left(1+i_{m}\right)^{12}=\left(1+i_{a}\right) \quad \text { or } \quad i_{m}=\left(1+i_{a}\right)^{1 / 12}-1
$$

Generalizing:

$$
i_{\text {period }}=\left(1+i_{a}\right)^{1 / k}-1
$$

where "period" is the number of períods that occur during one year (if we are thinking about months \rightarrow they are 12 in one year).

Rents

- Rents (def): Series of payments that occur during a certain period of time. They can classified according to 4 criteria:
i) Variability of the terms:
. Constant: All terms are identical
- Variable: Terms vary.
ii) Number of terms:
. Temporary (finite number of terms).
. Perpetual (infinite number of terms).
iii) Period of rent and of interest rate:
. Coincident: The periods coincide.
. Fractioned: Periods do not coincide.
iv) Moment where the fist term occurs:
. Normal: $1^{\text {st }}$ term occurs after one period of time
. Anticipated: $1^{\text {st }}$ term occurs immediately (moment 0)
. Postponed: $1^{\text {st }}$ term occurs after m periods of time ($m>1$)

Rents

- Annuity (def): A constant rent with a finite number of terms) where:

The rent and the interest rate coincide and is normal ($1^{\text {st }}$ term occurs after one period of time).

Suppose there is a series of payments of a certain amount " a " every period during n periods of time

Moment of
negociation
Present Value:

- $V_{0}=P /(1+i)+P /(1+i)^{2}+\ldots+P /(1+i)^{n}$
$\cdot V_{0}=\frac{P}{i}\left[1-\frac{1}{(1+i)^{n}}\right]$

Rents

- Demonstration:

$V_{0}=P /(1+i)+P /(1+i)^{2}+\ldots+P /(1+i)^{n}$
$V_{0}=P \underbrace{P\left[1 /(1+i)+(1 /(1+i))^{2}+\ldots+(1 /(1+i))^{n}\right]}$
sum of the terms of a geometric progression with reason $1 /(1+i)$
formula for the sum: $1^{\text {st }}$ term * (1-raason n)/1-reason). Substituting:
$V_{0}=P \frac{1}{(1+i)} \frac{1-1 /(1+i)^{n}}{1-1 /(1+i)}$
$V_{0}=P \frac{1}{(1+i)} \frac{1-1 /(1+i)^{n}}{\frac{1+i-1}{1+i}} \longrightarrow \quad V_{0}=\frac{P}{i}\left[1-\frac{1}{(1+i)^{n}}\right]$

Rents

Capitalized or Future Value of a Rent:

$$
\begin{aligned}
& V_{n}=P(1+i)^{n-1}+P(1+i)^{n-2}+\ldots+P(1+i)+P(1+i)^{0} \\
& V_{n}=\frac{P}{i}\left[(1+i)^{n}-1\right]
\end{aligned}
$$

Note: The capitalized value after n periods is the same as the Present Value multiplied by $(1+i)^{n}$

$$
\begin{aligned}
& V_{n}=V_{0}(1+i)^{n}=\frac{P}{\left[1-1 /(1+i)^{n}\right](1+i)^{n}} \\
& V_{n}=\frac{P}{i} \frac{\left[(1+i)^{n}-1\right]}{(1+i)^{n}}(1+i)^{n}=>V_{n}=\frac{P}{i}\left[(1+i)^{n}-1\right]
\end{aligned}
$$

Postponed Rents

- Consider an Annuity (constant and finite rent where periods coincide with interest periodicity) where the $\mathbf{1}^{\text {st }}$ term occurs after \boldsymbol{m} periods

Negociation

Present Value (today):

$$
V_{0}=\frac{P}{i(1+i)^{m}}\left[1-\frac{1}{(1+i)^{n}}\right]
$$

Postponed Rents

Demonstration:

$$
\begin{aligned}
& V_{0}=P /(1+i)^{m+1}+P /(1+i)^{m+2}+\ldots+P /(1+i)^{m+n} \\
& V_{0}=\frac{P}{(1+i)^{m}}[\underbrace{\left[1 /(1+i)+(1 /(1+i))^{2}+\ldots+(1 /(1+i))^{n}\right.}] \\
& \text { sum of the terms of a geometrical progression with reason } 1 /(1+i) \text { with } n \text { terms. } \\
& \begin{array}{l}
\text { Formula for the sum: : SUM } \\
\text { Substituting: } \\
V_{0}=\frac{P}{(1+i)^{m}} \frac{1}{(1+i)} \frac{1-1 /(1+i)^{n}}{1-1 /(1+i)}
\end{array} \\
& V_{0}=\frac{P}{(1+i)^{m}} \frac{1}{(1+i)} \frac{1-1 /(1+i)^{n}}{\frac{1+i-1}{1+i}} \longrightarrow \quad V_{0}=\frac{P}{i(1+i)^{m}}\left[1-\frac{1}{(1+i)^{n}}\right]
\end{aligned}
$$

Postponed Rents

Capitalized (or future) Value of an Annuity that is postponed m periods:

$$
V_{n}=P(1+i)^{n+n--(n+1)=n-1}+P(1+i)^{n-2}+\ldots+P(1+i)^{0}
$$

$$
V_{n}=\frac{P}{i(1+i)^{m}}\left[(1+i)^{n}-1\right]
$$

Perpetuities

- Perpetuity (Def): normal rent with a constant and an infinite number of terms) where the periodicity of the rent and of the interest rate coincide;

Present Value: $V_{0}=\lim _{n \rightarrow \infty} \frac{P}{i}\left[1-\frac{1}{(1+i)^{n}}\right]$

$$
V_{0}=\frac{P}{i}
$$

Variable Rents (growing terms)

Variable Rents where:

number of terms is finite
rent and interest rate periodicity coincide
normal (1 st term occurs after one period).
Particular case: The payments grow at a certain growth rate g :

Present Value (today):

$$
V_{0}=\frac{P}{i-g}\left[1-\left(\frac{1+g}{1+i}\right)^{n}\right]
$$

Variable Rents (growing terms)

Demonstration:

$$
V_{0}=P /(1+i)+P(1+g) /(1+i)^{2}+\ldots+P(1+g)^{n-1} /(1+i)^{n}
$$

$$
V_{0}=\frac{P}{1+i}[\underbrace{}_{\left.1+i+\frac{1+g}{(1+i)^{2}}+\frac{(1+g)^{2}}{(1+i)^{n-1}}+\ldots+\frac{(1+g)^{n-1}}{(1)}\right]}
$$

sum of the terms of a geometrical progression with reason $(1+g) /(1+i)$ with n terms.

$$
\text { Formula for the sum: } \quad \text { SUM }=1^{\text {st }} \text { term } \frac{1-\text { reason }}{1-\text { reason }}
$$

Substituting:
$V_{o}=\frac{P}{(1+i)} \frac{1-[(1+g) /(1+i)]^{n}}{1-(1+g) /(1+i)}$
$V_{0}=\frac{P}{(1+i)} \frac{1-[(1+g) /(1+i)]^{n}}{\frac{1+i-\lambda-g}{1+i}} \longrightarrow \quad V_{0}=\frac{P}{i-g}\left[1-\left(\frac{1+g}{1+1}\right)^{n}\right]$

Variable Rents (growing terms)

Capitalized Value (or future value, or final value):

$$
V_{n}=\frac{P}{i-g}\left[(1+i)^{n}-(1+g)^{n}\right]
$$

