Ciências Físico-Químicas – 9° Ano

Trabalho Prático – Verificação da Lei de Ohm

O Problema

A Sónia e o Ricardo na aula de físico-química estiveram a verificar a Lei de Ohm. Vamos ajuda-los a tirar as conclusões correctas...

Material

- Fonte com tensão (d.d.p)
 variável
- Voltímetro
- Amperímetro
- Interruptor
- Fios de Ligação
- Resistência de carvão

Procedimento

Faz a seguinte montagem:

- 1. Regista os valores medidos no voltímetro e no amperímetro
- 2. Altera a tensão (d.d.p) na fonte e regista, para cada alteração, regista os correspondentes valores medidos no voltímetro e no amperímetro.
- 3. Indica o valor da resistência de carvão (R₁)
- 4. Regista as observações no quadro seguinte:

Tensão na fonte de alimentação	Tensão nos terminais de R ₁ (V)	Intensidade de Corrente em R ₁ (A)	$\frac{U}{V}$ (Ω)

5. Esquematiza o circuito.

Questões pós-laboratoriais

1. O que podes concluir relativamente aos valores de $\frac{U}{I}$ obtidos?

2. Compara os valores de $\frac{U}{I}$ obtidos com o valor da resistência eléctrica (R₁) utilizada. O que concluis?

- **3**. Completa correctamente as frases seguintes:
 - Com esta actividade foi possível concluir que a relação que existe entre o valor da resistência eléctrica (R_1) usada e a razão entre U e I é ______.
 - A expressão matemática $\frac{U}{I}$ traduz a chamada ______, que é aplicada a todos os condutores _____.