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m Abstract Recent interest in using modeling and simulation to study movement
is driven by the belief that this approach can provide insight into how the nervous
system and muscles interact to produce coordinated motion of the body parts. With
the computational resources available today, large-scale models of the body can be
used to produce realistic simulations of movement that are an order of magnitude more
complex than those produced just 10 years ago. This chapter reviews how the structure
of the neuromusculoskeletal system is commonly represented in a multijoint model
of movement, how modeling may be combined with optimization theory to simulate
the dynamics of a motor task, and how model output can be analyzed to describe and
explain muscle function. Some results obtained from simulations of jumping, pedaling,
and walking are also reviewed to illustrate the approach.
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INTRODUCTION

One can learn a lot by doing experiments on people. In gait-analysis experiments,
for example, high-speed camera systems are used to track the changing positions
and orientations of the body segments, strain-gauge or piezoelectric transducers
are used to measure the magnitudes and directions of the resultant forces exerted
on the ground, and surface or in-dwelling electromyography (EMG) electrodes are
used to record the sequence and timing of muscle activity (1-3). These data pro-
vide a quantitative description of the kinematics and dynamics of body-segmental
movement, but they do not explain how muscles work together to produce a co-
ordinated gait pattern; specifically, kinematic, ground-reaction force, and muscle
EMG data alone do not explain how each muscle accelerates each and every body
segment at each instant during the gait cycle.

Computer modeling and simulation has risen to new heights in recent years,
mainly because of the growing belief that this approach can provide more quantita-
tive explanations of how the neuromuscular and musculoskeletal systems interact
to produce movement. Simulations of standing, walking, jumping, and pedaling,
in particular, have provided considerable insight into how the leg muscles work
together to achieve a common goal during each of these tasks (4-10). Interest in
using models to study movement has been, and continues to be, fueled also by
the ever-increasing performance of computers. With the computational resources
available today, large-scale models of the body [i.e. models that have many de-
grees of freedom (dof) and are actuated by many muscles] may be used to perform
realistic simulations of movement that are an order of magnitude more complex
than those performed just 10 years ago. In this chapter | review how the structures
of the neuromuscular and musculoskeletal systems may be represented in a math-
ematical (computer) model of the body, how these elements may be integrated to
simulate the dynamics of a motor task, and how model output can be analyzed to
describe and explain muscle function during multijoint movement.

WHAT SHOULD A MODEL OF MOVEMENT INCLUDE?

What to include in a model of movement depends on the intended use of the
model. If the overall goal is to understand muscle coordination, a model that does
not include joints and muscles is not likely to be useful. For example, the simplest
model used to study walking is the inverted pendulum (11-13) (FigaxeThis
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Figure 1 Increasing complexity of models used to simulate normal walking on level
ground. &) Planar 1 degree-of-freedom (dof) pendulum model used to simulate the sin-
gle support phase (11, 13p)(Planar 3-dof model used to simulate the single support
phase (16).d) Three-dimensional, 8-dof model of the body used to simulate the full-
gait cycle, except the period near toe-off (4).

model can describe the efficient transfer of kinetic and potential energy that takes
place when people walk at freely selected cadences and step lengths (11, 13), but
it cannot teach us much about how the leg muscles cooperate to produce a smooth
pathway of the body’s center of mass. Models with joints but no muscles (i.e. those
actuated by joint torques instead of muscle forces) are also not likely to be useful
in coordination studies because these models represent only the net effect of the
muscles around each joint (14—17). Indeed, torque-actuated models can sometimes
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lead to incorrect interpretations of muscle function, as has been demonstrated in
pedaling, for example (8, 9).

For good reason, structures contributing to the overall stiffness of a joint (i.e.
cartilage, menisci, ligaments, and capsule) are usually not included in multijoint
models used to study movement. This level of detail does not seem warranted, es-
pecially if the goal is to explain muscle function. If igament action is represented at
all, itis usually in the form of a passive jointtorque, with the magnitude of the torque
increasing exponentially near the limits of the joint's range of motion (18-23).
Cartilage and the menisci are rarely, if ever, included, the reason being that these
structures do not alter the forces transmitted by the joint; cartilage and the menisci
serve instead to decrease the joint contact stresses by increasing the contact areas
between the bones (24).

Movement simulations ought to includ® @ model of the skeletonh)a model
of the muscle pathsg)a model of musculotendon actuatiod) @ model of muscle
excitation-contraction coupling, and)@ model of the goal of the motor task (see
Figure 2).

Modeling Skeletal Dynamics

Most simulations of multijoint movement are planar; for example, sagittal-plane
models of the body have been used to simulate standing, walking, running, jumping,
and pedaling (5, 8-10, 25-32). The rationale is fairly simple. Firstly, flexion and
extension represent the major movements at most joints, so they contribute most
significantly to performance in most tasks (e.g. the vertical position of the body’s
center of mass during the ground-contact phase of jumping is determined almost
entirely by flexion and extension of the hip, knee, and ankle) (5, 30-33). Further-
more, planar models with hinge joints have fewer dofs than do three-dimensional
models with, say, hinge, universal, and ball-and-socket joints; therefore, simula-
tions based on planar models generally take less computer time than do those that
allow movement of the body parts in three dimensions.

Whether a motor task should be simulated in two or three dimensions depends
mainly on the question being asked. For example, a planar model is most probably
adequate for studying the contribution of stance knee flexion-extension to motion
of the center of mass during normal gait (14, 16) (Figune However, this model
cannot be used to determine the relative contributions of stance knee flexion-
extension, pelvic list, and pelvic rotation because the latter two movements occur
mainly in the frontal and transverse planes, respectively (34). The model shown in
Figure X can be used to study the contributions of stance knee flexion-extension

Figure 2 Diagram showing the components most commonly included in a multijoint
model of movement. Thiasetsshow specific models of muscle excitation-contraction
coupling, musculotendon actuation, muscle-path geometry, and the skeletons that were
used to simulate jumping and walking (23, 38, 71).
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and pelvic list, but not that of pelvic rotation, because this movement is not repre-
sented explicitly here. Figurea¥hows a three-dimensional, 10-segment, 23-dof
model of the skeleton, which has been used to simulate one cycle of normal walk-
ing (23). Because it embodies all six major determinants of gait (i.e. hip, knee,
and ankle flexion-extension, pelvic rotation, pelvic list, and lateral pelvic displace-
ment) (34), this model may be used to study the effects of hip, knee, and ankle
flexion-extension versus movements of the pelvis in the transverse and frontal
planes.

Regardless of whether the skeleton is modeled in two or three dimensions, the
relationships between the forces applied to the body and the resulting motion of
the body segments can always be expressed in the form

M(@)d + C(@)4* + G(a) + R@F"" + E(@.9) = 0, 1)

whereq, g, § are vectors of the generalized coordinates, velocities, and accel-
erations, respectivelyM(q) is the system mass matrix aM(q)g a vector of
inertial forces and torque€(q)g? is a vector of centrifugal and Coriolis forces
and torques(q) is a vector of gravitational forces and torquBgg) is the matrix
of muscle moment arm&MT is a vector of musculotendon forces aR@)) FM"
a vector of musculotendon torques; a@al), §) is a vector of external forces and
torques applied to the body by the environment.

One of the more difficult parts of developing a model of skeletal dyna-
mics is dealing with contact between the body and the environment. Practically

Figure 3 (a) Ten-segment, 23-dof model of the skeleton used to simulate normal
walking (23, 71). The model skeleton was actuated by 54 muscles (not shown). Six
generalized coordinates were used to reproduce all possible movements of the pelvis
in space; the remaining nine segments branch in an open chain from the pelvis.
The head, arms, and torso, represented as a single rigid body, articulates with the
pelvis via a 3-dof ball-and-socket joint located at the third lumbar vertebra. Each
hip was modeled as a 3-dof ball-and-socket joint, each knee as a 1-dof hinge joint,
each ankle as a 2-dof universal joint, and each metatarsal joint as a 1-dof hinge.
Each foot was modeled using two segments, a hindfoot, and a toes segme)t (see
Because the pelvis has 6 dof, each foot is free to make and break contact with the
ground. b) Diagram showing the right foot of the model showrainThe ankle and
subtalar axes are projected onto the frontal plaop lef), sagittal planetbp right),

and transverse planédtton). The metatarsal axis is shown in the transverse plane
and lies at the sole of the foobgttom metatarsal). The, y, andz axes define the
fore-aft, vertical, and transverse directions, respectively. The vertices and connecting
lines represent the volume of a foot plus a size-10 tennis shoecifded dotsdrawn

in the transverse planbdgtton) show the locations of five ground springs placed under
the foot. These springs were used to simulate the interaction of the foot with the ground
during walking. (Modified from Reference 38.)
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all simulations of movement treat this interaction in a simple way. For example,
simulations of walking often ignore the changes in velocity and acceleration that
occur at heel contact by modeling the single and double support phases separately
(26, 35, 36). Figure Billustrates an alternate approach in which the compliance
between the body and the ground is modeled using a series of damped springs
(4, 23,29, 37). Each ground spring is three dimensional, meaning it applies a force
simultaneously in the vertical, fore-aft, and transverse directions. The interaction
between the foot and the ground can be simulated very efficiently with this model
because the vertical force applied by each spring varies exponentially with the
height of the foot above the ground (for details, see 38).

If the number of dofs of the model skeleton is greater than, say, four, then
a computer is needed to obtain Equation 1 explicitly. A number of commercial
software packages are available for this purpose, including AUTOLEV by On-Line
Dynamics Inc, SD/FAST by Symbolic Dynamics Inc, ADAMS by Mechanical
Dynamics Inc, and DADS by CADSI.

Modeling Muscle Paths

All multijoint models of movement assume that the muscle tendons insert at single
points on the bones (4,5, 9, 10, 23, 39-46). When a muscle inserts over a large
area of bone, it is usually separated into two or more portions, as illustrated in
Figure 4.

Two different methods are commonly used to model the paths of muscles in
the body: the straight-line and centroid-line methods. In the straight-line method,
the path of a muscle is represented by a straight line joining the centroids of the
muscle attachment sites (46—49). Although this method is easy to implement, when
a muscle wraps around a bone or another muscle, it may not produce meaningful
results (Figure 5). In the centroid-line method, the muscle path is represented as
a line passing through the locus of cross-sectional centroids of the muscle (47).
Although the muscle’s line of action is represented more accurately in this way, the
centroid-line method can be difficult to apply becauseit(may not be possible
to obtain the locations of the muscle cross-sectional centroids for even a single
position of the body, andbj even if a muscle’s centroid path is known for one
position of the body, it is practically impossible to determine how the muscle’s
path changes as body position changes (47).

One way of addressing this problem is to introduce effective attachment sites
or via points at specific locations along the centroid path. In this approach, the
muscle’s line of action is defined by using either straight-line segments or a com-
bination of straight-line and curved-line segments between each set of via points
(50, 51). The via points remain fixed relative to the bones even as the joints move,
and muscle wrapping is taken into account by making the via points active or
inactive, depending on the configuration of the joint. This method works with-
out any difficulties when a muscle spans a 1-dof hinge joint, but it can lead to
discontinuities in the calculated values of moment arms when joints have more
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Tendon

< Actuator >

Figure 6 Schematic diagram of a model commonly used to simulate musculotendon
actuation. Each musculotendon actuator is represented as a 3-element muscle in series
with an elastic tendon. The mechanical behavior of muscle is described by a Hill-
type contractile element (CE) that models muscle’s force-length-velocity property, a
series-elastic element (SEE) that models muscle’s active stiffness, and a parallel-elastic
element (PEE) that models muscle’s passive stiffness. The instantaneous length of the
actuator is determined by the length of the muscle, the length of the tendon, and the
pennation angle of the muscle. In this model, the width of the muscle is assumed to
remain constant as muscle length changes. (Modified from References 5, 57.)

than 1 rotational dof. An alternate approach, called the obstacle-set method, eli-
minates this problem by allowing the muscle to slide freely over the bones and
other muscles as the configuration of the joint changes (52-55). Because the
path of a muscle is not constrained by contact with the neighboring muscles and
bones, the obstacle-set method produces smooth moment arm-joint angle curves
(Figure %).

Modeling Musculotendon Actuation

When muscles are included in a model of movement, their mechanical behavior is
often described by a three-element, Hill-type model (56, 57). In the model shown in
Figure 6, muscle’s force-producing properties are described by four parameters:
a muscle’s peak isometric forc&J") and corresponding fiber lengti) and
pennation anglex), and the intrinsic shortening velocity of musclg.§,). F" is
usually obtained by multiplying muscle’s physiological cross-sectional area by a
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generic value of specific tension (46, 51, 57). Value$Jb{the length at which
active muscle force peaks) andthe angle at which muscle fibers insert on tendon
when the fibers are at their optimal length) are almost always based on data obtained
from cadaver dissections (58, 5%)ax IS assumed to be muscle-independent in
most simulations of movement. For example, simulations of jumping (5, 23, 30),
pedaling (9, 10), and walking (23) assumgx = 10s* for all muscles, which
models the summed effect of slow, intermediate, and fast fibers (57). Very few
studies have examined the sensitivity of model simulations to changgs.in

even though a change in the value of this parameter affects performance nearly as
much as a change in the valueff' (60).

Tendon is usually represented as an elastic element (5, 9, 23, 46,51, 57). Even
though force varies nonlinearly with a change in length as tendon is stretched
from its rest lengthl! (61, 62), a linear force-length curve is sometimes used
(5, 30, 38, 60). This simplification will overestimate the amount of strain energy
stored intendon, but the effect on actuator performance is not likely to be significant
because tendon force is small in the region where the force-length curve is nonlin-
ear. However, actuator performance does depend strongly on the value assumed
for1J, which is important because this parameter is difficult to measure. Changing
the value ofl! in the model of Figure 6 can change not only the magnitude of
the peak force developed by the actuator, but also the joint angle at which peak
force occurs (46,51, 57). Thus, the value baind, more specifically, the value of
the ratio of optimal muscle-fiber length to tendon rest lenglit)J, assumed in
the model can significantly affect predictions of muscle coordination.

For the actuator shown in Figure 6, musculotendon dynamics is described by
a single, nonlinear, differential equation that relates musculotendon BYc8, (
musculotendon lengti{™), musculotendon shortening veloci{"), and muscle
activation @M to the time rate of change in musculotendon force:

ol — i (1507 BT e e @

Given values oFMT IMT yMT ‘anda™ at one instant in time, Equation 2 can be
integrated numerically to find musculotendon force at the next instant.

Modeling Muscle Excitation-Contraction Coupling

Muscle cannot be activated or relaxed instantaneously. The delay between muscle
excitation and activation (or the development of muscle force) is due mainly to
the time taken for calcium pumped out of the sarcoplasmic reticulum to travel
down the T-tubule system and bind to troponin (63). The delay between muscle
excitation (1, which represents the net neural drive) and muscle activaaithig
usually modeled as a first-order process (5, 9, 10, 23, 28, 56, 57, 64):

a™ = (1/1isd(U” — ua™ + 1/tr)(u — @M);u = u(t);a™ = a™(t).  (3)

Other forms of this relation are also possible; for example, an equation that is linear
in the control,u, has been used to simulate jumping (5) as well as pedaling (9).
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Implicit in the formulation of Equation 3 is the assumption that muscle activation
depends only on a single variahleOther models assume treatlepends on two
inputs,u; anduy, say, which represent the separate effects of recruitment and stim-
ulation frequency (65, 66). In simulations of multijoint movement, whether both
recruitment and stimulation frequency are incorporated in a model of excitation-
contraction coupling is probably not as important as the values assumed for the
time constantsyise andrzy . Values of these constants range from 12—20 ms for rise
time, trise, and from 24—-200 ms for relaxation timey (5, 9, 28, 32, 57). Changes

in the values of these constants within the ranges indicated can also have a signifi-
cant effect on predictions of movement coordination (FC Anderson & MG Pandy,
unpublished results).

Modeling the Goal of the Motor Task

Equations 1-3 can be combined to form a model of the neuromusculoskeletal
system. The inputs to this system are the muscle excitations, and the outputs are
the body motions ( Figure 2). Measurements of muscle EMG and body motions
can be used to estimate muscle forces during movement (68, 69). Alternatively, the
goal of the motor task can be modeled and used together with dynamic optimization
theory to calculate the set of muscle excitations needed for optimal performance
(see below). This approach has been used to simulate posture (25), standing up
from a chair (70), walking (4, 23, 28, 71), jumping (5, 30-32, 38), and pedaling
(8-10, 64).

Modeling the goal or cost function is not an easy proposition because perfor-
mance is determined by the physiological and environmental constraints imposed
on the task, and these factors can be difficult to quantify and describe mathemati-
cally. Take walking for example. It is difficult to know what, if any, criterion is
used to produce the pattern of muscle activations and body-segmental motions
that is observed when people walk at freely selected cadences and step lengths
(44,72, 73). For tasks such as walking, then, some measure of performance can be
hypothesized, and once a simulation has been obtained, the model results can be
compared with kinematic, external force, and muscle EMG measurements to sup-
port, reject, or refine the model of the goal (70, 74, 75). However, some tasks, such
as minimum-time kicking (43), maximum-height jumping (5, 32, 38), maximum-
speed pedaling (9), and maximum-distance throwing (76), present relatively unam-
biguous goals and are, therefore, well suited to the dynamic optimization approach.
If the purpose of the task can be stated with a good deal of certainty (e.g. jump
height is determined by the position and velocity of the body’s center of mass at
liftoff), the dynamic optimization approach can then be used to refine a model of
the system dynamics. For example, the model of Figure 3 has been used to simulate
both vertical jumping and walking (38, 71). Because the cost function for walking
is ambiguous, the model was used first to solve a dynamic optimization problem
for maximum-height jumping. Once the problem for jumping was solved and the
response of the model validated against experimental data, the same model was
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then used with greater confidence to simulate normal walking over level ground
(38,71,77).

DETERMINING MUSCLE FORCE: DYNAMIC
OPTIMIZATION SOLUTIONS ARE PREDICTIVE

Once a model of the body has been formulated, it can be used to determine quanti-
ties that cannot be easily measured. For example, muscle forces cannotbe measured
noninvasively (78, 79), so these quantities are determined using either inverse or
forward dynamics techniques. In the inverse dynamics method, noninvasive mea-
surements of body motions (position, velocity, and acceleration of each segment)
and external forces are used as inputs in Equation 1 to calculate muscle forces
(41,42, 44,80). The forward dynamics method, on the other hand, uses muscle
excitations (or muscle activations) as the inputs to calculate the corresponding
body motions (Figure 7) (4-6, 9, 23, 28, 45, 64, 81). Because the number of mus-
cles crossing a joint is greater than the number of dofs specifying joint movement,
the force developed by each muscle cannot be determined uniquely. Virtually all
attempts to solve this problem are based on the application of optimization theory
(for a review, see 82; for variations on the optimization approach, see 27, 83-85).

Whereas the inverse dynamics (or static optimization) method solves a different
optimization problem at each instant during the movement, the forward dyna-
mics (or dynamic optimization) method solves one optimization problem for one
complete cycle of the movement. This is the critical difference between these
two methods, and it is also the reason dynamic optimization solutions are more
expensive computationally (see below). Static optimization, on the other hand, has
its own shortcomings. First, the validity of the results depends on the accuracy of
the data recorded during a motion analysis experiment, specifically the positions,
velocities, and accelerations of the body segments. The difficulty in accurately
estimating velocity and acceleration from position measurements (86, 87) means
that significant errors may be present in the calculated values of the net joint
torques and, therefore, in the estimates of muscle force (41,42, 45). Second, it is
difficult to include muscle physiology in the formulation of a static optimization
problem because estimates of muscle length and contraction velocity depend on
the accuracy with which the positions and velocities of the body segments can be
measured. Finally, static optimization is a descriptive or analysis-based approach:
A model of the goal of the motor task cannot be included in the formulation of this
problem. Dynamic optimization is more powerful becawgéh{e system equations
(Equations 1-3) are integrated forward in time and, thus, muscle physiology is
easily incorporated in the formulation of the problem, dn)damodel of the goal
of the motor task can also be included because the optimization is done over a
complete cycle of the task.

Do static and dynamic optimization solutions lead to the same results? The
answer appears to be yes. For a comparison to be performed fairly, the same set of
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Figure 7 Comparison of forward and inverse dynamics methods commonly used to deter-
mine muscle force.Top) Muscle excitations are the inputs and body motions are the outputs

in forward dynamics. Muscle forc&Y') is an intermediate product (i.e. output of the model

for musculotendon dynamics). If all the elements are modeled (i.e. skeletal dynamics, muscu-
loskeletal geometry, and muscle actuation), and if the goal of the motor task is also modeled,
then dynamic optimization can be applied to find the set of muscle excitations that produces
an optimal performanceBptton) Body motions are the inputs and muscle forces are the
outputs in inverse dynamics. Thus, measurements of body motions are used to calculate the
net muscle torques exerted about the joints, from which muscle forces are determined using
static optimization. EMG, electromyography. (Modified from Reference 82.)

body motions and joint torques must be used in both methods. This was done in
a recent gait study, where the joint torques obtained from a dynamic optimization
solution were used as the inputs to a set of analogous static optimization problems
(88). Muscle physiology could be incorporated in the formulation of the static
problems because the lengths and contraction velocities of the muscles were avail-
able from the dynamic solution. The static and dynamic solutions were found to
be remarkably similar in their predictions of muscle force. Furthermore, muscle
physiology had only a small effect on the character of the static solutions, indi-
cating that the accuracy of the muscle forces derived from the static optimization
method depends mainly on the values of the joint torques. Thus, static and dynamic
optimization appear to give the same results, at least for relatively low-frequency
movements like walking [however, Happee (66) shows that these two methods are
also practically equivalent for higher-frequency, ballistic-type movements, such as
throwing].
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Which method should be used to determine muscle force? Provided accurate
measurements of external forces and body motions are available, static optimiza-
tion would be favored in calculations of muscle force, mainly because it is much
less expensive computationally. If, however, the aim is to find how changes in body
structure affect function and performance of a motor task, then dynamic optimiza-
tion must be used because measurements of body motions and external forces are
not available a priori in this instance (e.g. 60, 89, 90).

HIGH-PERFORMANCE COMPUTING AND

VISUALIZATION CAN BE APPLIED TO PRODUCE

REALISTIC SIMULATIONS OF MOVEMENT

Early simulations of movement based on the application of dynamic optimization
were limited mainly by the performance of the computers available at the time
(43, 45, 91). With the computational power now available, large-scale models can
be combined with dynamic optimization theory to produce simulations that are
an order of magnitude more complex than those performed just 10 years ago.
The feasibility of using dynamic optimization to produce realistic simulations
of movement depends on three factoe: & robust computational algorithm is
needed to converge to a solution of the dynamic optimization problgniidgh-
performance, parallel computers are needed to solve the problem in a reasonable
amount of time; andd) very fast computer graphics workstations are needed to
visualize the simulation in real time (23, 38, 71, 92).

Dynamic Optimization Problems can be Parameterized

Formulation of the dynamic optimization problem leads to a two-point, boundary-
value problem (TPBVP), which can be solved by first integrating the system equa-
tions (Equations 1-3) forward in time and then integrating the adjoint or costate
equations backward in time (93). Even when the number of dofs and the number of
muscles represented in a model are small, fewer than 5, say, solution of the TPBVP
can be difficult. The reason is that backward integration of the adjoint equations is
unstable because of the high nonlinearity of these equations. Rather than solving
the TPBVP directly, a better approach involves parameterizing the input control
variables (e.g. muscle excitations) and converting the dynamic optimization prob-
lem into a parameter optimization problem (94). Given an initial guess for the
values of the controls, the system equations are first integrated forward in time
to evaluate the cost function and any constraints imposed on the simulated move-
ment. Derivatives of the cost function and constraints are then calculated and used
to find a new set of controls, which improves the values of the cost function and
the constraints in the next iteration (see Figure 8). Although the parameter op-
timization algorithm shown in Figure 8 is more robust than any method used to
solve the equivalent TPBVP (8-10, 94), this advantage must be weighed against
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Initial Guess for Muscle Excitations

!

Nominal Forward Integration

CPU
1

' '

Derivatives of Performance and Constraints

CPU| weee lcPU| ... [cPU
/ ‘—| n N
Y Y

Parameter Optimization Routine

-~ Yes —»STOP

No

Improved Set of Muscle Excitations

Figure 8 Diagram illustrating the steps involved in solving a dynamic optimization
problem using the method of parameter optimization. Each muscle excitation history or
“control” is discretized into a set of independent variables. The problem is to calculate
the values of the control variables that produce an optimal performance (e.g. maximize
jump height). Linear interpolation is used to reconstruct the excitation history for each
muscle once the values of the control variables have been found. Each iteration of the
parameter optimization algorithm involves three stegBased on the initial guess for

the controls, aforward integration of the system equations (Equations 1-3) is performed
to evaluate the cost function and the constrairfisa(series of forward integrations

is then performed to evaluate the derivatives of the cost function and constraints with
respect to each control variable; ar) & parameter optimization routine is used to
calculate a new set of control variables, one that improves the values of either the cost
function or the constraints. A parallel computer can be used to calculate the derivatives
of the cost function and the constraints with respect to each control variable in the
second step. The algorithm shown here has been implemented on various types of
multiple instruction, multiple data parallel computers to simulate maximum-height
jumping and walking. CPU, central processing unit. (Modified from Reference 38.)
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the increase in computational time associated with the parameter optimization ap-
proach (92, 95). In particular, calculation of the derivatives of the cost function
and the constraints with respect to the controls can be very expensive because the
number of forward integrations equals the number of controls for each iteration of
the parameter optimization algorithm (92, 94).

Dynamic Optimization Problems can be Parallelized

Fortunately, rapid advances in computer technology over the past decade have sig-
nificantly reduced the computational time needed to solve dynamic optimization
problems using the parameter optimization approach. Parallel computing, in par-
ticular, allows multiple processors to be used to perform the forward integrations
needed to compute the derivatives of the cost function and the constraints during
each iteration of the algorithm (see Figure 8). Computation of the derivatives can
be distributed among the various processors of a parallel machine because the
forward integrations are all independent of one another. Thus, a 23-dof, 54-muscle
model of the body can be used to solve a dynamic optimization problem for jump-
ing with just 23 h of central processing unit (CPU) on a 128-processor IBM SP-2
(38). Using the same model to simulate one cycle of gait takes roughly 1000 times
longer [10,000 h of CPU are needed to converge to a solution for walking using
a Cray T3E (23, 71)], but even formulating problems of this size was unthinkable
10 years ago. As computational speed continues to increase, so does the feasibility
of combining dynamic optimization theory with very detailed models of the body

to simulate such complex motor tasks as walking.

Simulations of Movement Should be Visualized

One of the keys to a successful simulation is a good initial guess for the control

variables (e.g. joint torques and muscle excitations). The initial guess should be
chosen such that the simulated movement is at least qualitatively similar to what
is observed experimentally. Very fast computer graphics workstations, such as a
Silicon Graphics Onyx 2, can be used to visualize the simulated movement in real
time. The single-processor speed of these machines allows forward integrations
to be executed very quickly so that the control histories can be adjusted on line as
the simulation proceeds (Figure 9).

HOW MODELING AND EXPERIMENTATION CAN BE
INTEGRATED TO STUDY MOVEMENT

Dynamic optimization theory is most powerful when the problem is formulated
so that movement is synthesized from the beginning to the end of the task; that is,
when the problem is formulated with no kinematic constraints so that the solution
is driven mainly by the nature of the cost function (see Figure 10). This is the most
appealing way to pose the optimization problem, but it is also the most difficult
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Musele Excitations
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Figure 10 Schematic diagram illustrating how musculoskeletal modeliog (ef), dy-

namic optimization and high-performance computitmp(right), in vivo experimentation
(bottom lef}, and data analysebdttom righ) may be combined to study human movement.
Here, the dynamic optimization problem is formulated and solved independent of experiment:
Measurements of body motions, ground-reaction forces, and muscle activitations are used
only to evaluate the predictions of the model. Alternatively, modeling, dynamic optimization,
and in vivo experimentation can be explicitly combined by formulating and solving a tracking
problem (see text). CPU, central processing unit.

type of problem to solve. The reason is because the solution space remains very
large when no constraints are used to bound it, and the time taken to converge
to the optimal solution is then much longer. In a recent simulation of walking,
the body-segmental motions, ground-reaction forces, muscle forces, and muscle
excitation histories were predicted for one gait cycle given only the positions and
velocities of the body segments at the beginning and end of the cycle (23, 71). The
optimal solution was found by minimizing the total amount of metabolic energy
consumed by the muscles per meter walked. Because the model was able to choose
any movement pattern consistent with minimum metabolic cost, converging to the
optimal solution took inordinately long [approximately 10,000 h of CPU (23, 71)].

Dynamic optimization problems may also be formulated so that the solution
is constrained to follow a given path. For example, in the walking simulation
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mentioned above, the joint angles and the components of the ground-reaction force
may be treated as constraints that the solution must satisfy within a prescribed toler-
ance. The problemthenisto find the muscle excitation histories (and muscle forces)
that correspond to the measured patterns of body motions and ground forces. This
approach, which has been used to simulate lower-limb (4, 8, 10, 45, 74) and upper-
limb movements (96), is called tracking because the dynamic optimization solution
is required to track a set of limb motion and external force measurements obtained
from a motion analysis experiment (93). The method is appealing because by pre-
scribing a path for the model to follow, the simulation is more likely to converge on

a pattern of movement that is similar to what is observed in nature. Even when the
trajectories of some of the dofs of the model cannot be measured accurately [e.g.
tibiofemoral and tibiocalcaneal translations at the knee and ankle (97, 98)], the
tracking approach can be used to constrain the model to follow those movements
that can be measured and to predict all the remaining quantities (i.e. muscle forces
and the translational movements of the bones at a joint) that cannot be measured.
The main limitation of the tracking method is that it compromises the predictive
power of the dynamic optimization approach; in particular, the tracking method
cannot be used to predict how changes in body structure affect tissue function and
task performance. On the other hand, its main advantages are that it improves the
convergence characteristics of the dynamic optimization problem, and an optimal
solution can generally be found with smaller investments of computer time.

HOW SHOULD MODEL OUTPUT BE ANALYZED?

A muscle can contribute to the acceleration of a body segment without touching it.
This conclusion follows from Equation 1, where the mass malfi¢q), has two
important properties: ) it is a function of the generalized coordinatgsyhich
specify the relative positions of the body segments; dndt (s a nondiagonal
matrix, meaning that its off-diagonal terms are always nonzero (82). These prop-
erties are preserved wh&f(q) is inverted, and so from Equation 3, all forces (i.e.
Coriolis and centrifugal forces, gravity, muscle forces, and external forces) act to
accelerate all body segments at each instant, thus

4 = —MY@)[C(@)§* + G(a) + R@F"T + E(g, @)1, 4)

whereM‘l(g) denotes the inverse of the system mass matrix. Muscle’s contribu-
tion to the accelerations of the body segments is then given by

gmusz _Mfl(g)R(g)FMT (5)

Equation 5 explains in mathematical terms why each muscle contributes to the
acceleration of all the body segments. The physical explanation is as follows.
When a muscle touches a body segment, it can apply a force to that segment; the
force the muscle applies to that segment is transmitted up and down the multilink
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chain via the contact forces acting at the joints. Thus, a muscle like soleus, which
crosses only the ankle, can accelerate the tibia, the foot, and all the other segments
in the body as well. The magnitudes of these induced accelerations depend on
the relative positions of all the segments at the instant under consideration. In flat-
footed posture, for example, when the knee is near full extension, a force developed
in soleus can accelerate the knee further into extension twice as much as it acts to
accelerate the ankle into extension. When the knee is bent to angles greater than
90, however, a force developed in soleus acts to accelerate the knee into flexion
(see Figure 6.12 in reference 82). Recent analyses have lead to similar conclusions
about the function of soleus during pedaling as well (9) (see below). Body position
affects the magnitude and direction of the acceleration of a body segment induced
by a muscle force because it affects the torque applied by the muscle force to that
segment. Inthe example above, soleus accelerates the knee into extension when the
body is placed in a near-upright posture because the joint contact forces induced at
the knee are oriented in such a way that they apply torques to the thigh and shank,
which accelerate the knee into extension. When the knee is bent greater than 90
however, the joint-reaction forces induced by soleus at the knee are oriented such
that they then apply torques to the thigh and shank, which accelerate the knee into
flexion.

MODEL SIMULATIONS CAN REVEAL FUNCTION

Because the dynamic optimization approach produces the time histories of muscle
forces, Equation 5 can be used to determine how muscles accelerate and generate
power to the body segments during movement (6, 82). Muscle-induced accelera-
tions have been used to study coordination of multijoint movement during various
motor tasks, including standing (7), vertical jumping (99), walking (23, 28, 99a),
and pedaling (8-10). In this section, | review some of the results obtained for
vertical jumping and pedaling and present some recent findings for walking as
well.

Jumping and pedaling are both well suited to the dynamic optimization ap-
proach. One uses both legs in unison to jump to one’s maximum height; thus, two
legs can be modeled as one, which simplifies the equations for skeletal dynamics
(5). Jumping also presents a well-defined goal (i.e. to jump as high as possible).
Pedaling, on the other hand, is performed seated, so balancing the upper body is
not an issue (8, 9, 64). Also, because the crank is propelled through a constrained
path, the muscles have fewer dofs to control.

Jumping

Simulations of jumping have shown that muscles dominate the vertical acceleration
of, and the power generated to, the body segments during propulsion; gravitational
and inertial forces do not contribute much, except near liftoff, when the ankle, knee,
and hip are all then rotating very quickly (99). The uniarticular gluteus maximus
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trunk power (waltts)
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Figure 11 Contributions of individual muscle groups to the total power generated to
the trunk (head, arms, and torso) by all the leg muscles during the propulsion phase of
a maximum-height jump. The area under the shaded curve represents the total energy
generated to the trunk by all the muscles (TOTAL MUSCLE). Energy generated to the
trunk by vasti (VAS), gluteus maximus (GMAX), and the ankle plantarflexors (PF) is
represented by the area under each of these curves. PF represents the contribution from
soleus and gastrocnemius in the model. The dashed line represents the contribution of
all the other muscles in the model. These results were obtained by solving a dynamic
optimization problem for jumping using a 4-segment, 4-dof, 8-muscle model of the
body. The problem was to find the set of muscle excitations that produced the highest
possible jump. (Modified from Reference 99.)

and vasti account for a large fraction of the total propulsive energy made available
by all the muscles; these muscles also contribute 70% of the total power gener-
ated to the trunk (Figure 11). The biarticular muscles, especially rectus femoris
and hamstrings, contribute little to liftoff velocity and, therefore, to jump height
(32,99).

Jumping to one’s maximum height requires precise coordination of the actions
of the gluteus maximus, vasti, and plantarflexors (including gastrocnemius). The
sequence of muscle activity is proximal-to-distal (5, 33). Gluteus maximus works
synergistically with vasti, whereas soleus and gastrocnemius function indepen-
dently to accelerate the trunk upward. Both gluteus maximus and vasti accelerate
the hip and the knee into extension, even though each muscle crosses only one of
these joints. Hip and knee extension are needed to move the trunk upward dur-
ing early propulsion, and not surprisingly, these tasks are performed by the two
strongest muscles in the body. Soleus and gastrocnemius are activated just prior
to liftoff, generating maximum power to the trunk at a time when neither gluteus
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maximus nor vasti can sustain adequate levels of muscle force (because the hip
and knee are near full extension at liftoff) (30, 99).

Pedaling

Model simulations have shown that muscles dominate acceleration of the crank
throughout the pedaling cycle; gravitational and inertial forces do not contribute
much (8). As with jumping, gluteus maximus and vasti are the prime movers of
the leg, providing more than half the energy needed for propulsion. In contrast
to jumping, however, the biarticular muscles, particularly hamstrings and rec-
tus femoris, appear to have well-defined roles in pedaling. These muscles make
smooth pedaling possible by accelerating the crank through the stroke transitions
(i.e. the transitions between top dead center and bottom dead center) (9, 10). One
unanticipated result is that hamstrings act to accelerate the knee into extension
in_late downstroke. The extensor torque produced by hamstrings at the hip in
late downstroke is greater than the flexor torque that this muscle produces at the
knee. In addition, limb position at this time is such that a hip extensor torque is
more readily able to accelerate the knee into extension than a knee flexor torque
is able to accelerate the knee into flexion. Consequently, even though hamstrings
produce aflexor torque at the knee, the net action is to assistin knee hyperextension
during late downstroke. The knee does not hyperextend, however, because soleus
acts to accelerate the knee into flexion at this time (see 9; Figure 6).

Are muscle synergies evident in pedaling? The answer appears to be yes. Six
biomechanical functions have been identified and organized into three antagonis-
tic pairs: upward-downward and anterior-posterior acceleration of the foot rela-
tive to the pelvis and upward-downward acceleration of the foot relative to the
shank (100). Muscles work synergistically within the framework of this scheme
to produce the most effective crank acceleration over each cycle. For example,
soleus works synergistically with gluteus maximus and vasti by transferring en-
ergy from these muscles to the crank, where it is most needed for propulsion
(10).

Walking

Hundreds of papers have been written on walking; vet, we still have only a su-
perficial understanding of how muscles work together to coordinate movement
of the body parts during gait (2, 101). For normal walking, the leg muscles are
called on to support the body against the downward force of gravity as well as
to maintain forward progression at a more-or-less steady rate. Analysis of a dy-
namic optimization solution for normal gait has shown that gluteus maximus,
gluteus medius, iliopsoas, vasti, soleus, and gastrocnemius are the prime movers,
contributing up to 70% of the total mechanical energy produced by all the mus-
cles (MG Pandy & FC Anderson, unpublished results). Gluteus maximus and
vasti_provide support against gravity during initial stance, gluteus medius dur-
ing midstance, and soleus and gastrocnemius during terminal stance (Figure 12).
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The muscles that contribute most in the fore-aft direction are soleus, vasti, and
gastrocnemius. Vasti and soleus decelerate the body’s center of mass (i.e. pro-
vide a backward acceleration) during the first half of stance, but then soleus and
gastrocnemius propel the body forward during terminal stance and the first part
of the ensuing double support phase (102) (Figure 12). Calculations of muscle-
induced accelerations and power can also be used to more fully explain mus-
cle synergies thought to be present during walking; for example, the gait simu-
lation mentioned above could also be used to evaluate the hypothesis that vasti
acts during midstance to accelerate the ankle into extension by retarding forward
rotation of the shank, thereby helping soleus and gastrocnemius to prepare for push
off during terminal stance (2, 103).

LOOKING AHEAD

This is an exciting time for computational modeling in general and its application
to the study of human movement in particular. With the birth of parallel computers
and high-end graphics workstations, models of increasing complexity can be used
to perform more realistic simulations of walking, running, throwing, etc. Although
the entertainment industry may be interested in more detailed simulations of move-
ment purely for the sake of increased realism (104), more advanced models and
simulations are also needed to address some of the more pressing problems in
orthopedics and sports medicine. For example, detailed models of body structure
are needed not only to describe muscle function during normal gait, but also to
evaluate surgical procedures designed to correct abnormalities seen in the gait pat-
terns of cerebral palsy and stroke victims. Detailed models are also needed to more
fully describe and explain the interactions between muscles, ligaments, and bones
in intact, injured, and reconstructed joints. At the knee, for example, more accurate
representations of muscle, tendon, ligament, and bone structure will enable model-
ing to be used to study how joint function is affected by procedures, such as anterior
cruciate ligament (ACL) reconstructions and high tibial osteotomies (105, 106).

Increasing computer speed will also enable models of greater complexity to
be used to study mechanics and energetics at a much deeper level than has been
possible to date. The model shown in Figure 3 has been used together with dy-
namic optimization theory to describe how muscles coordinate motion of the body
segments during normal walking (23). If the time taken to converge to a solution
could be decreased by formulating and solving a tracking problem (see above),
then this model could also be used to study how muscle function changes when
walking speed, incline of the ground, and body structure change independently.
Because the dynamic optimization solution gives detailed information about the
forces developed by the leg muscles for each perturbation introduced to the model,
analyses of the simulation results will allow rigorous testing of the hypothesis that
metabolic cost of movement is determined mainly by the cost of generating muscle
force (107, 108).
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Certainly one of the most significant challenges facing the modeling com-
munity today is finding new ways to more accurately describe structure of the
musculoskeletal system (e.g. moment arms, muscle-fiber and tendon rest lengths,
muscle cross-sectional areas, and muscle pennation angles). There is some evi-
dence to suggest that musculoskeletal geometry (i.e. muscle paths) is the most
critical element of the modeling process described in Figure 2 (109, 110). In gait
studies, for example, calculated values of muscle force depend more heavily on
estimates of muscle moment arms than on the mechanical properties of the muscles
themselves (42, 88, 110). This finding is one of the reasons why generic models are
sometimes criticized (111), and it is also the impetus for using techniques such as
computed tomography and magnetic resonance imaging to model body structure
more accurately (112—114). Unfortunately, application of these techniques is still
an expensive proposition, so much so that cost is often named as the major factor
limiting the use of subject-specific models in gait analysis and surgery simulation.

Even if computed tomography and magnetic resonance imaging could be used
cost-effectively to develop subject-specific models of musculoskeletal geometry,
there are bound to be instances, most likely in movements such as running, jump-
ing, and throwing, which are performed at higher frequencies, where the activation
and contractile properties of muscle play a significant role in determining the de-
velopment of muscle force. Take vertical jumping, for example, where model
simulation results indicate that performance is strongly dependent on the values
assumed for muscle cross-sectional area, muscle-fiber contraction speed, and the
rise and relaxation times for muscle activation (60, 89, 90). If tasks such as this
are to be studied in even greater detail, then better estimates will be needed on a
muscle-by-muscle basis for the intrinsic maximum shortening velocity of muscle
and for activation rise and relaxation times. Determining the values of muscle-
specific parameters is even more daunting when pathology is present. For exam-
ple, spasticity caused by stroke and cerebral palsy may alter the force-length and
force-velocity properties of muscle (115), but how can these effects be monitored
in vivo, and how should tissue adaptation that accompanies pathology and im-
mobilization after surgery be represented in a computer model of the body? More
research is needed to learn how best to obtain in vivo estimates of the geometry and
properties of the neuromusculoskeletal system so that these data may be integrated
into the subject-specific modeling process.
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trapezius

deltoid

Figure 4 Computer-generated rendering of the fan-shaped trapezius and deltoid muscles
included in a model of the shoulder. Multiple paths were used to model the action of each
muscle group. In this model, the trapezius was separated into four bundles and the deltoid
into three. The geometry of the bones and the centroid paths of the muscles were based
on three-dimensional reconstructions of high-resolution medical images obtained from the
National Library of Medicine’s Visible Human Male dataset. The muscle attachment sites
were found by computing the centroids of the sets of triangles that defined the attachment
sites of the muscles on the reconstructed surfaces of the bones (54, 112).
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Figure 5 (@) Posterolateral view of the obstacle-set model used to represent the paths of the
three heads of triceps brachii in a model of the arm. The medial (1) and lateral head (3) were
each modeled using a single-cylinder obstacle set (not shown). The long head (2) was modeled
using a double-cylinder obstacle set, as illustrated here. The locations of the attachment sites of the
muscle and the locations and orientations of the obstacles were chosen to reproduce the centroid
paths of each portion of the modeled muscle. The geometry of the bones and the centroid paths of
the muscles were based on three-dimensional reconstructions of high-resolution medical images
obtained from the National Library of Medicine’s Visible Human Male datagComparison of
moment armstfp) for the long head of triceps obtained using the straight-line model (Straight),
fixed-via-point model (Fixed), and the obstacle-set model (Obstacle). For each model, the moment
arms were calculated over the full range of elbow flexion, with the humerus positioned alongside
the torso in neutral rotation (solid lines) and in°4ititernal rotation (dotted lines)Bpttom)
Expanded scale of the graph above, where the moment arms obtained using the fixed-via-point
and obstacle-set models are shown near the elbow flexion angle where the muscle first begins
to wrap around the obstacle (cylinder) placed at the elbowA$€e€he Fixed model produces a
discontinuity in moment arm when the shoulder is rotatetidternally (dotted line). (Modified

from Reference 55.)


Gonçalo Nunes
Highlight


“uoIeIsSYIom XAuQ J0ssao0.d N so1ydels) Uod1|IS B UO pazifensiA Sem Uo e nwis 8y ‘g ainbiH ul umoys wyiLobie euoireindwaod ayy fusn
PoA|os sem wia|goid ay 1 “payfem e Jod ppow syl Ul sajosnw ay) | Ag pawnsuod ABieus J1jogeiew JO JuUnowe sy} paziwiuiw eyl weqo.d
uoleziwndo diweuAp e BUIA|OS AQ puUNO) 819M SUOITRIIOXS S9SN Y| "UoiR[nwis ay) BuLnp ppow ay) 0] Indul Seubis uoiR}IDXe a[asnw ay L
(127) 'gainBiH4 Ul uMoys ppPoW Jop-£z ‘Wewbss-0T ay) Busn paw.iopad uoienwis Bujeme Jo joysdeus e Buimoys abew Joindwo) 6a1nbi4

"S0QU0D P ABW NoA

095°0 = awy fouy Camms

*Ajuo asn euossed 104 *20/80/20 U0 (TNN) BOGS!T P BAON 8pepSieAIUN uo-g Aq
Bio'sma1nalenuue’s eulno e woly papeojumoq €/2-S2-€ T00Z "Bug ‘pawoig Ay nuuy


Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight


Annu. Rev. Biomed. Eng. 2001.3:245-273. Downloaded from arjournals.annualreviews.org
by b-on: Universidade Nova de Lisboa (UNL) on 02/08/07. For personal use only.

Force (BW)

1.6
L2
O . 8 . Castroc
|| \J‘*[‘I\
04 e
0
0.4
0.25 - Force (BW)
0
_0.25 - :(\l:l:lmc
—T.U:rr\l.
059 20 40 60 80 100

% Gait Cycle

Figure 12 Contributions of individual muscles to suppaxtg) and progressiorbtton)
during gait. The results were obtained by solving a dynamic optimization problem for one
cycle of normal walking using a 10-segment, 23-dof, 54-muscle model of the body (23,
71) (see Figure 3). Each muscle’s contribution to support is given by its contribution to the
vertical force exerted on the ground. Similarly, each muscle’s contribution to progression
is defined by its contribution to the fore-aft component of the ground-reaction force vector.
BW, body weight.
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