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ABSTRACT
The methods of nonlinear systems and control theory were
applied to a simple musculoskeletal system with one joint
and two muscles in this paper. For this purpose, a non-
linear input-affine state-space model has been developed
for this system with a flexor and an extensor muscle tak-
ing into account the nonlinear muscle and movement dy-
namics. Two types of controllers were designed: a lin-
ear pole-placement servo designed for the locally linearized
model, and a nonlinear controller based on asymptotic out-
put tracking method. It is expected and forward that dur-
ing a movement with a large range of motion the nonlin-
earities of the system will be dominant and the nonlinear
methods will outperform the linear ones. The output refer-
ence tracking properties of the controllers have been inves-
tigated by simulation and it has been found that the nonlin-
ear controller gives more accurate tracking with no over-
shoots than the linear one.
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1 Introduction

Even the simplest musculoskeletal system exhibits strongly
nonlinear dynamic behavior that calls for applying the re-
sults of nonlinear systems and control theory. At the same
time, the proper control of musculoskeletal systems is im-
portant for designing and controlling artificial limbs, mus-
cle prosthesis and in neuro-physiological and Functional
Electrical Stimulation (FES) investigations. Therefore, the
aim of this work is to examine the different kind of controls
of such a strongly nonlinear system, as a musculoskeletal
system.

A number of papers can be found in the literature
that deal with the design and evaluation of various con-
trollers for musculoskeletal systems. In the papers found
in the area of biomechanics and movement control gener-
ally static (e.g. [1]) or dynamic (e.g. [7, 13]) optimization
is applied in a feed-forward manner for controller design.
In these studies the movement is controlled based on the
minimization of some key performance variables, such as
minimization of net force, net activation, fatigue etc. When
the controller design is based on optimization, the nonlin-

ear behavior is usually generally taken into account but the
computing cost of the design is very high and these meth-
ods are generally not robust to the disturbances.

Thelen et al. [19] proposed the so called computed
muscle control method to make faster optimization by ap-
plying feedback. Applying this method they computed the
state of the muscles and then the value of excitation there-
from. De Sapio et al. [5] developed the task-level control
of human motion, that is similar to control of Thelen et. al.
[19]. It is suitable for control of goal directed motion and
posture control at the same time.

In the area of posture control the controller is gener-
ally designed by using engineering methods (feedback con-
trollers) based on locally linearized system models. There-
fore, these controllers are not able to take into account the
nonlinear dynamics of the system but their design and op-
eration are computationally less demanding than that of the
ones based on dynamic optimization. The feedback nature
of these controllers can provide stable response to distur-
bances and external interactions. Khang and Zajac [10],
for example, designed an LQ-like (Linear Quadratic) con-
troller for maintaining the standing posture with FES ap-
plying the dynamic equations linearized around the stand-
ing posture. Kooij et al. [11] also developed an LQ-like
controller to the linearized system equations for maintain-
ing the standing posture by integrating all available sensory
information. Peterson and Chizeck [14] developed a LQ
control for a loaded agonist-antagonist muscle pair. Their
control law translates the position and velocity of exter-
nal load into an optimal applied force for position track-
ing. Riener and Fuhr [15] recommended a control strategy
which accounted for voluntary upper body effort during the
control of standing up, but did not require the estimation of
hand reactions.

During the last decades it has been shown in various
fields of engineering (electrical, mechanical, process engi-
neering etc.) that the application of traditional PID-control
and even the methods of modern control theory based on
locally linearized state-space models often do not give sat-
isfactory results when applied to systems exhibiting sig-
nificant nonlinearities. Paralelly, many theoretically well-
founded results have appeared in the field of analysis and
control of dynamic systems given in nonlinear state-space
form (see e.g. [12], [9] and [16]). The main drawbacks
of some nonlinear control techniques (especially of the
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Figure 1. Simple musculoskeletal system

methods based on exact or input/output linearization) are
that they can be quite sensitive to model uncertainties and
in many cases they require the exact measurement of the
whole state vector. Luckily, the rapidly improving quan-
tity and quality of measurements and actuators allows us
firstly to build high-fidelity nonlinear models suitable for
nonlinear controller design [6], and secondly to implement
the computed (often complex) feedback laws. Thus the ap-
plication of nonlinear control theory has the potential to
provide a fast and efficient controller that is able to take
into account the nonlinear dynamics of the musculoskele-
tal system at the same time.

2 Methods and Materials

2.1 Model

A model developed by Csercsiket al. [4] was applied for
the controller design. This musculoskeletal model is a sim-
ple 1-degree-of-freedom one-joint system with a nonlin-
ear flexor and a nonlinear extensor muscle (see figure 1)
suitable for nonlinear systems analysis and control. Pa-
rameters and variables belonging to flexor muscle have
got f sub-index while parameters and variables belong-
ing to extensor muscle have gote sub-index in this pa-
per. The dynamic model of a one-joint system with two
muscles contained the nonlinear dynamics of movement
[21] and the nonlinear dynamics of the muscle contrac-
tion [8, 17, 20]. The nonlinearities of movement dynamics
originate from the gravitational effects and the geometry of
the model, while nonlinearities of muscle dynamics origi-
nate from the nonlinear properties of the muscles, such as
force-length-velocity relation, activation dynamics, passive
force and tendon nonlinear dynamics. Inputs of the system
were the normalized exciting signals of each muscle, i.e.
u = [uf , ue]T , where the elements should obey the con-
straints:0 ≤ uf ≤ 1; 0 ≤ ue ≤ 1. The performance out-
put was the joint angle, i.e.y = α, while its time derivative,
the joint angle velocityω has served as a secondary output.

The dynamic segments of the musculoskeletal system
were supposed to be rigid. The nonlinear equation (1) be-

low describes the movement dynamics, i.e. how torques act
on the moving musculoskeletal system:

dω

dt
=

1
Θ + ml2com

(
M + mlcom cos

(
α − π

2

)
g
)

(1)

whereα [rad] is the joint angle,ω [rad/s] is the angle veloc-
ity, Θ [kgm2] is the moment of inertia defined to the mass-
center point of the bone,m [kg] is the mass of the moving
segment,lcom [m] is the distance between the moving seg-
ment’s center of mass point and the joint axis,M [Nm] is
the resulting joint torque, andg [m/s2] is the gravitational
acceleration. The correction termπ2 means that the direc-
tion of the first, fix segment was vertical as it can be seen
in figure 1.

The current length of the muscle is computed form the
current joint angle using the cosine theorem. The muscle is
divided into two parts: from the origin to the closest point
to the joint, and from the closest point to the joint to the
insertion. The length of both muscle parts are computed
using the cosine theorem. We consider that the shortest
distance between muscle and joint is the moment arm of
the muscle.

The crucial component of the model was the part that
generates the exerting muscle forces. A muscle model was
then converted into a state-space form where the following
eight state variables were applied:
- Joint angle:α
- Joint angle velocity:ω
- Muscle activation states (2 pieces):qχ

- Tendon lengths (2 pieces):lχ
T

- Tendon extracting velocities (2 pieces):vχ
T

whereχ =f ,e refers to the type of muscle, and thus

x = [qf , qe, α, ω, lfT , leT , vf
T , ve

T ]

The torque is computed by the equation

M = Ffdf − Fede (2)

whereFf [N] and Fe [N] are the forces of flexor and ex-
tensor muscle, respectively, acting on the joint, anddf , de

[m] are the moment arms of the flexor and extensor muscle,
respectively. The force of the flexor muscle is computed by
the equation:

Ff = Fmax
f

(
FL

(
lCE
f

)
FV

(
vCE

f

)
qf + Fmax

PE,fFPE
f

)
(3)

whereF max
f [N] is the maximal force of flexor muscle,

FL(lCE
f ) is a normalized nonlinear force-length relation-

ship [17], FV (vCE
f ) is the normalized, nonlinear force-

velocity relation,qf is the activation state of the flexor mus-
cle, F PE

f [N] is the passive force generated by the flexor
muscle andF max

PE,f is a constant showing the ratio between
the maximal passive force and maximal isometric force of
the flexor muscle.

The activation dynamics is described by a first order
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differential equation [20] in case of both muscles:

dqf (t)
dt

= −
(

1

τf
act

(βf + (1 − βf ) uf(t))

)
qf (t)

+
1

τf
act

uf (t) (4)

whereuf (t) [1] is the flexor muscle exciting signal,τ f
act [s]

is the time constant of muscle activation when the muscle is
fully excited (uf(t) = 1), τf

deact = τf
act

βf
is the time constant

of muscle deactivation when the muscle is fully deactivated
(uf(t) = 0) andβf is a constant.

The force-length relationFL(lCE
f ) is the same as

used by [17], i.e.

FL (lCE,f) = cf

(
lCE,f

lopt
CE,f

)2

−2cf

(
lCE,f

lopt
CE,f

)
+cf+1 (5)

wherelCE,f [m] is the current length of the flexor mus-
cle, lopt

CE,f [m] is the optimal flexor muscle length,cf is a
constant.

The nonlinear mechanical properties of muscles were
described based on [17, 20] but the static nonlinear func-
tions were approximated to fit them better to the control
purpose. The original force-velocity functionFV (v CE)
described by Hill [8] and extended by van Soest and
Bobbert [17] was not continuously differentiable, so to
avoid computational problems, we used an approximat-
ing smooth function to meet the requirements of nonlinear
analysis (the parameters of the function were found by pa-
rameter fitting):

Fv(vCE) = −3
2

arctan
(

9
5
vCE − 9

25

)
π−1 +

167
200

(6)

wherevCE [m/s] is the contraction velocity.
The tendons are modeled with a second order differ-

ential equation for the sake of simplicity:

lfT
dt

= vf
T (7)

dvf
T

dt
= −kf

T (lfT − lslack
T,f ) + sf

T vf
T − Ff

zf
T

(8)

wherelfT [m] is the length of the tendon of flexor muscle,
vf

T [m/s] is the elongation velocity of tendon of flexor mus-
cle, lslack

T,f [m] is the slack length of the tendon of flexor

muscle, andkf
T , sf

T andzf
T are constants. Thekf

T is deter-
mined such that the elongation of tendon is 4% [18] when
the muscle force is equal to its maximal isometric force and
sf

T andzf
T have to be much smaller. Similar functions were

used for the extensor muscle.
The values of the parameters were chosen to respect

the real operating conditions of the elbow joint and elbow
muscle. Therefore, the joint angle should fulfill0 ≤ α <
π.

2.2 The applied controller design techniques

Because the applied nonlinear control methods require a
single output single input (SISO) model, the model was di-
vided into two parts. One of them contained an active flexor
muscle and an inactive extensor muscle, while the other
contained an inactive flexor muscle and an active extensor
muscle, thus each part became a SISO model. Control input
was designed separately for these two parts and switching
between them was controlled by appropriate rules.

This separation means that only one of the muscles
can get excitation signal at a given time. This assumption
is close to reality, because during a lot of movements either
the agonist or the antagonist muscle is active [21].

2.2.1 Pole-placement servo controller design

The purpose of this simple controller design method is to
achieve asymptotic stability and constant reference track-
ing in the closed loop system. Let us assume that the state
equations of the linearized equations of the open-loop sys-
tem are given by

ẋ = Ax + Bu (9)

y = Cx, (10)

wherex ∈ R
n is the state vector,u ∈ R is the manipulable

input andy ∈ R is the output to be controlled. Let us
extend the linearized model in the following way[

ẋ
ż

]
=
[

A 0
−C 0

] [
x
z

]
+
[

B
0

]
u +

[
0n×1

1

]
yR

(11)
whereyR ∈ R is the reference.

If the extended model (11) is controllable, then we
can place the poles of the closed loop system arbitrarily
using a full state feedback

u = −K

[
x
z

]
, K = [Kx Kz] (12)

to achieve the required dynamic response and constant ref-
erence tracking. We note thatK in (12) can also be com-
puted as a result of an optimal (e.g. linear quadratic) de-
sign problem, but in our particular application the pole-
placement method is easier to use to avoid undesirable
overshoots in the controlled output.

2.2.2 Asymptotic output tracking of SISO
nonlinear systems

Consider a nonlinear single-input single-output dynamical
system in the following input-affine state-space form

ẋ = f(x) + g(x)u (13)

y = h(x) (14)
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wherex ∈ R
n is the state vector,u ∈ R is the input,y ∈

R is the output,f andg are smoothRn-valued mappings,
f(x0) = 0 andh is a smoothR-valued mapping.

It is said that (13) has relative degreer at the equilib-
rium x0 if LgLk

f h(x) = 0 for all x in a neighborhood of
x0 and allk < r − 1, andLgLr−1

f h(x0) �= 0, whereLfh
denotes the Lie-derivative ofh alongf .

Consider a SISO nonlinear system of the form (13)
having relative degreer at its equilibrium. Let us denote
the (not necessarily constant) reference to be tracked by
yR(t) and define the tracking errore as

e(t) = y(t) − yR(t) (15)

It is shown e.g. in [9] that by using the following static
nonlinear feedback law

u =
1

LgLr−1
f h(x)

(
−Lr

fh(x) + y
(r)
R

−
r∑

i=1

ci−1(L
(i−1)
f h(x) − y

(i−1)
R )

)
(16)

the tracking error has the following linear dynamics

e(r) + cr−1e
(r−1) + · · · + c1e

(1) + c0e = 0. (17)

This means that by choosing the design parameters
c0, . . . , cr−1, the dynamics of the tracking error can be
shaped appropriately (naturally, keeping the input con-
straints in mind, too).

2.3 Controller design, tuning and comparison

For the design of the pole-placement servo controller, the
nonlinear model of the musculoskeletal system was lin-
earized around the current reference joint angle.

The poles of the closed loop system were placed on
the real axis on the left half-plane to avoid sinusoids in the
system response and they were chosen so that the control
input should satisfy the physical constraints (i.e. its value
is between zero and one). The method of pole-placement
was the following. If a pole of the open-loop system had a
nonnegative real part, then it was replaced to approximately
-5 on the real axis. A pole with a negative real part and a
nonzero imaginary part was simply projected onto the real
axis (i.e. the imaginary part was set to zero).

It can be shown [4] that the musculoskeletal described
in section 2.1 has relative degree 3 in the whole operat-
ing region for both inputs. To compute the nonlinear feed-
back law (16), the following parameter values were used:
c0 = 500000, c1 = 100000 andc2 = 5000. These val-
ues were determined experimentally to obtain good perfor-
mance while satisfying the input constraints.

The two control approaches were tested using a piece-
wise constant reference signal which can be seen in fig. 2.
The performance comparison of the controllers were based

Figure 2. Controller outputs for a piecewise constant refer-
ence

Table 1. Input and error norms

Input norm Error norm
Pole-placement servo 2.0508 2.948
Asy. output tracking 1.9536 2.0561

on the computation of the 2-norm of the tracking error and
that of the necessary control input. Note that the simple
2-norm of the input is only loosely correlated to the actual
energy used by the muscles (see e.g. [21]). The settling
time and maximal overshoots were also examined during
the controller evaluation.

The nonlinear controller was additionally tested by a
piecewise linear (not constant) reference signal for exam-
ining the possibilities of the tracking of more complex ref-
erence signals.

3 Results

3.1 Tracking of a piecewise constant reference

Responses to the piecewise constant reference are shown
in fig. 2. It is visible that the settling time of the pole-
placement servo controller is higher than that of the nonlin-
ear one, while there are no overshoots in case of asymptotic
output tracking. The inputs generated by the controllers can
be seen in fig. 3. As it can be seen, all the inputs are within
the prescribed range.

The input and error norms (see in table 1) in case of
asymptotic output tracking are lower than in the case of
the pole-placement servo. Therefore we can conclude that
asymptotic output tracking gives a better performance with
lower input energy.
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Figure 3. Inputs generated by the controllers in the case of
piecewise constant reference tracking

Figure 4. Tracking of piecewise linear output and its inputs
generated by the asymptotic output tracking controller

3.2 Tracking of a piecewise linear function

Applying asymptotic output tracking nonlinear control the
musculoskeletal system can be controlled to track the re-
quired piecewise linear joint angle function. This task has
not feasible for the pole-placement controller. The results
are shown in fig. 4. The slopes of the piecewise linear sec-
tions are0, 1 and−1 rad/s. Greatest tracking errors oc-
curred when the required output became constant. Over-
shooting is less than0.05 rad, so its amplitude is much
lower than the amplitude of the changing of required out-
put.

Using asymptotic output tracking control, a reference
with a slope of4 rad/s can be tracked without problems,
but the overshoot in the output becomes higher with the
given parameters if this slope is steeper.

4 Conclusion

The methods of nonlinear systems and control theory were
applied to a simple musculoskeletal system with one joint
and two muscles. Two types of controllers were designed:
a linear pole-placement servo designed for the locally lin-
earized model, and a nonlinear controller based on asymp-
totic output tracking method.

Our initial hypothesis was that the nonlinear asymp-
totic output tracking control gave a better performance than
the pole-placement servo in the nonlinear model, especially
when the range of the movement is wide. The simula-
tion results showed us that this hypothesis is true: non-
linear control gives better performance. Its response is
much faster than the pole-placement servo, it is able to
track a continuously changing reference output, with min-
imal overshooting. The other advantage of the nonlinear
control is that it is able to take into account the whole non-
linear behavior of musculoskeletal system and requires less
input energy.

The overshoot of the nonlinear controller can be re-
duced with the proper choice of thec i design parameters.
When the value ofc0 is much higher than the value ofc1,
the overshoot of asymptotic output tracking is smaller, but
the output oscillates more.

The computation and simulation time of asymptotic
output tracking controller was high due to the complexity
of the nonlinear expressions in the feedback law (simula-
tion of a2.5 sec movement required1 min on a Pentium
III 600MHz, 128 MB RAM), while pole-placement con-
troller simulation only required5 sec.

The results suggest that linear control can be applied
when the movement range is small or efficient computation
is very important. But if the motion range is wide or the
reference input is a more complex function of time, then the
application of nonlinear control theory becomes necessary
to provide satisfactory reference tracking.
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Appendix

Values of the applied model constants are shown in table
2. df is the moment arm of the flexor muscle.dprox

f is
the distance between the flexor muscle’s origin and joint.
ddist

f is the distance between the flexor muscle’s insertion
and joint.
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Table 2. Value of constants

const. dim. value const. dim. value
τf
act [s] 0.012 τ e

act [s] 0.012
βf [1] 0.5 βe [1] 0.5
cf [1] -3.19 ce [1] -3.19

lopt
CE,f [m] 0.3 lopt

CE,e [m] 0.3
Fmax

PE,f [1] 0.5 F max
PE,e [1] 0.5

lslack
T,f [m] 0.1 lslack

T,e [m] 0.1
kT,f [N/m] kT,e [N/m]
sT,f [Ns/m] 10000 sT,e [Ns/m] 10000
zT,f [Ns2/m] 1 zT,e [Ns2/m] 1

Fmax,f [N] 1000 Fmax,e [N] 1000
df [m] 0.05 de [m] 0.05

dprox
f [m] 0.2 dprox

e [m] 0.2
ddist

f [m] 0.05 ddist
e [m] 0.05

g [m/s2] -9.81 lCOM [m] 0.12
m [kg] 2 Θ [kgm2] 0.015
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