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Abstract— Many patients suffer from the spinal cord diseases, 
a proper modeling and control of human motor system will help 
to improve the prognosis of them. This paper presents an 
integrated model to describe the static and dynamic characters of 
spinal neuro-musculoskeletal system based on the currently 
accepted theories and hypothesis in biological motor control. 
Then a new control system with Generalized Predictive Control 
and neural network is designed to control the former model.  
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I. INTRODUCTION 
In the cases of spinal cord diseases such as spinal cord 

trauma, degenerative myelopathy, infectious or inflammatory 
disease and neoplastic diseases, patient may lose the sense and 
motor control function. In this study, we intend to develop a 
control system to get the descending commands for spinal 
neuro-musculoskeletal system, which will be helpful to 
improve the prognosis of the patient. Furthermore, this study 
will also give us good ideas to develop new control algorithms 
and design advanced control systems which will lead to new 
insights to industry, such as human-machine interfaces and 
robotics. 

In the central nervous system of human motor system, the 
spinal cord transmits motor commands and sensory information 
and generates simple movements. If the spinal cord lost most 
function, the descending command from higher center to the 
spinal cord will be blocked. Thus, for rebuilding the motor 
system of paralyzed patient, we need to build a fairly 
completed neuro-musculoskeletal system based on 
experimental data and develop a controller with proper control 
strategy.  

Therefore, in following contents, we first propose an 
elaborate model for neuro-musculoskeletal system, which 
contains enough detail in both anatomical structure and 

dynamic properties to be useful, so the model can simulate 
experimental observations and generate predictions of 
interacting modulation of muscle behavior after combing with 
model for control system. Then, we develop a new controller 
with Generalized Predictive Control (GPC) and neural network 
to control the limb active movement. 

II. MODELING OF NEURO-MUSCULOSKELETAL SYSTEM  
Fig.1 shows the block diagram of neuro-musculoskeletal 

system, in which, the muscle joint system consists of a pair of 
antagonists around a hinge joint. The Hill-type model is 
adopted to describe the dynamics of both flexor and extensor.  

For simplicity, in following contents, Subscript f and e 
represent the characters for flexor and extensor muscles. 
Superscript M represents muscle, T represents tendon, and MT 
represents the musculo-tendon system. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.  The block diagram of spinal neuro-musculoskeletal system.  Inputs 
to α -motoneurons cause muscles to produce force which shortens muscles and 
changes joint angles.  Spindle afferents detect changes in muscle-length, and 
biased by activity in the γ-motoneurons.  The golgi tendon organs detect 
tension,and send the signal to inhibitory interneurons. 

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight

Gonçalo Nunes
Highlight



         

A. Muscle Activation 
Based on the Equilibrium Point Hypothesis of human motor 

system, we assume that the nervous system may coordinate 
changes in flexor threshold angles ( fλ ) and extensor threshold 
angles ( eλ ), which is determined by the reciprocal (R) and 
coactivation (C) commands. The dynamic threshold ( *

fλ , *
eλ ) 

depend on the static ones and angular velocity ( /d dtω θ= ) [1]:                      

                    * *

,  

, 
f e

f f e e

R C R Cλ λ

λ λ µω λ λ µω

= − = +

= − = −
 

(1) 

where µ is a damping factor [1]. Thus, we assume that 
motoneuron pool background activation cf and ce can be 
calculated by experimental equations, where [x]+=x if x≥0 and 
[x]+=0 if x<0:                                                                                 

       
* *[ ] [ ]1, 1f e

f ec e c eα θ λ α λ θ+ +− −= − = −  (2) 

The motoneuron pool outputs are determined by both the 
background activation and the contribution of stretch reflex, 
reciprocal inhibition and recurrent inhibition. The output of 
motoneuron pool is modeled as the sum of all excitatory 
(positive) and inhibitory (negative) inputs, and is given as [2]: 

1( ) ( ) (1 )
1 ( )

GTO
f f f f f e f

f f

u t c t s v r v I
c t g

= + − −
+

 

1( ) ( ) (1 )
1 ( )

GTO
e e e e e e e

e e

u t c t s v r v I
c t g

= + − −
+

 

 
 

(3) 

where ( )fu t and ( )eu t  represent the output of motoneuron pools 
for flexor and extensor muscles, that is, the neural input signal. 

fs , es are stretch reflex gains; fr , er  are reciprocal inhibition 
gains; fg , eg are Renshaw cell gains and fv , ev are proportional 
to Ia afferent discharge frequencies of spindles from the flexor 
and extensor (see spindle dynamics), GTO

fI  and GTO
eI  are the 

feedback of Golgi tendon organs. 

Based on Zajac’s previous work [3], the dynamics of 
muscle activation ( )a t  is determined by the neural input 
signal ( )u t , the relationship is described as follows: 

( ) 1 1( ) ( )f
f f

f f

da t
a t u t

dx τ τ
= − +  

( ) 1 1( ) ( )e
e e

e e

da t a t u t
dx τ τ

= − +  

 
 

(4) 

where fτ , eτ  are time constants for the muscle activation of 
flexor and extensor, respectively. 

B. Muscle Mechanical Properties 
The muscle mechanical properties describe the general 

structure and physical characters of the muscle, which include 
the muscle active force, muscle passive force and tendon 
interacts. 

1) Active force: 
 

The muscle model follows a general hill-type model. Active 
muscle force is defined as the product of force-length, and 
force-velocity factors with muscle activation 

j i k i
0 ( ) ( ) ( )

M MM MF F FL L FV V a t=  (5) 

where iM
L represents the muscle length normalized to optimal 

muscle fiber length( 0
ML ), iM

V is the muscle contraction 
velocity normalized to its maximal shorting 
velocity( 0

MV ). j ( )FL L  describes how the normalized active 
force output of muscle is dependent on its length L. k( )FV V  
describes how the normalized active force is depend on its 
speed V . ( )a t is the muscle activation. 0

MF is the maximal 
isometric force. 

Based on the former work of Zajac, k( )FV V  is given as: 

k
i( )

( )
1

M
b V c

aFV V
e −

=
+

 (6) 

j ( )FL L is given as follows: 
j i i2( ) ( ) 2 1

M M
FL L d L d L d= − + +  (7) 

where a, b, c, d are constants. 

2) Passive force 
Passive forces provide a virtually immediate influence that 

promotes limb stability. Kirsch et al. [4] found that the passive 
muscle stiffness and viscosity estimates depended on the 
statistical properties of the perturbations. The e passive muscle 
force is given as following equations: 

( ) ( )P P PF f l B l v= + ⋅  (8) 
0.1663{exp[208.2( 0.036)] 1}  0.036 0.057

( ) 13.0076 2743( 0.057)  0.057
0                                         0.036

P

l l
f l l l

l

− − < <
= + − ≥
 ≤

 
(9) 

0.34624{exp[208.2( 0.036)]}               0.057
( )

27.4                                                          0.057P

l l
B l

l
− <=  ≥

        (10) 

In these equations, the muscle velocity v and length l are 
normalized by the maximum speed of shortening and the 
optimal fiber length, respectively.  

3) Tendon Interacts  
The dynamic properties of muscle-tendon can be expressed 

by a first-order differential equation [5]: 

i i i i( )
MT

T MT Md F K V V
dt

= −  
(11) 

where iMT
F represents normalized muscle-tendon force, it 

equal to normalized muscle force  and normalized tendon force 
( i i iMT M T

F F F= = ); iMT
V represents normalized muscle-tendon 

velocity; iM
V represents normalized muscle velocity; 

t represents time; and iT
K represents normalized tendon 

stiffness. 

We modeled the tendon as a linear spring, with a stiffness 
of TK . Because the tendon force was the same as muscle force, 
thus, tendon length could be determined as [5]:  
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M
T TS

T

FL L
K

= +  
(12) 

where TSL  is the tendon slack length, which is determined as in: 

0 01.2TS MT ML L L= −  (13) 

where 0
MTL is the maximally elongated musculo-tendon length. 

Thus muscle length could be obtained from the musculo-
tendon length by following equation [5]: 

M MT TL L L= −  (14) 
Coupled with Eq. (12) we have:. 

M
M MT TS

T

FL L L
K

= − −  
(15) 

C. Joint Dynamics 
The joint torque jT  is calculated as follows: 

j f f e e LT F h F h T= ⋅ − ⋅ +  (16) 
where fF and eF are forces of flexor and extensor; LT  is an 
external torque applied to the joint.  

The dynamic properties of a joint are calculated as follows: 
2

2j j j
d dI B T
dt dt

θ θ+ =  
(17) 

2 2M M
f e f f e eK K K h K hκ = + = ⋅ + ⋅  (18) 

0.03jB κ=  (19) 
where jI  is the moment of inertia; jB is the coefficient of 
viscosity; θ  is the joint angle; κ  is joint stiffness; fK  
and eK are joint stiffness of flexor and extensor muscles; while 

M
fK and M

eK are muscle stiffness of flexor and extensor, 
respectively. Passive elastic joint force is ignored. Joint 
viscosity is also related to muscle active stiffness by (18) [6].  

The relation in (19) is given in [7]. Muscle active stiffness 
for flexor and extensor is defined under isometric condition as 
follows:  

i( ) 2 ( 1)
M

Mf ofM
ff fM M

f of

F F
K a t d L

L L
∂

= = ⋅ ⋅ ⋅ ⋅ −
∂

 

i( ) 2 ( 1)
M MM e oe

ee eM M
e oe

F FK a t d L
L L
∂= = ⋅ ⋅ ⋅ ⋅ −

∂
 

 
 

(20) 

where M
ofF , M

oeF , M
ofL and M

oeL are maximal isometric muscle 
force and optimal fiber length for flexor and extensor muscles. 

D. Muscle receptors 
Muscle receptors monitor the statement of the moving 

elements, and transfer the feed back signal to the motor neuron 
in spinal cord, which mainly includes the muscle spindle and 
Golgi Tendon orgons. 

1) Golgi Tendon Organs 
In this study, we used the model of Houk and Simon to 

describe the dynamics of the Golgi tendon organ response to 
muscle force. The applicability of this model to tendon organ 

afferent behavior during normal motion was confirmed by 
Prochazka and Gorassini [8,9]. 

The transfer function for Golgi tendon organ is a band-pass 
filter [9]: 

(1 )(1 )(1 )
0.15 1.5 16( )

(1 )(1 )(1 )
0.2 2 37

GTO GTO

S S S

H S K S S S

+ + +
=

+ + +
 

 
(21) 

2) Spindle Dynamics 
In this report, we assume a lumped, linear dynamics of a 

spring-damper model of spindle to provide muscle length and 
velocity feedback [10]. The dynamics of the spindle is given by  

0(1 ) ( )PE S S
s S PE S

SE SE

K B dT dxT B K x T
K K dt dt

γ+ + ⋅ = + +  (22) 

where ST  is the tension within the spindle, x  is spindle length, 
we assume it is equal to the muscle length in this study, SEK  
and PEK  are serial and parallel stiffness of the spindle, and SB  
is the damping coefficient of the spindle, 0( )ST γ  is the tension 
generated by spindle, which is assumed to be proportional to 
the intensity of activation [2], that is: 

0 ( )ST Pγ γ= , 
where γ is the fusimotor input to the spindle, and P is a 
constant. 

In fact, we need two fusimotor inputs to the spindles in 
flexor muscle and extensor, respectively. However, 
Neurophysiological evidence [11,12] suggests that single 
cortico-motoneurons can activate premotor interneurons in the 
spinal cord that exhibits reciprocal control of antagonist 
muscles through fusimotor-activated spindle afferents. 
Therefore, it is possible for using a single static command to 
govern the spindles of both flexor and extensor muscles in a 
differential manner via a proper bias by spinal interneuronal 
network [2]. 

For convenience, we define the range of the descending 
drive parameter as 0.5 0.5γ− ≤ ≤ . For flexor and extensor 
spindles, their static inputs are given as [2]: 

0.5fγ γ= + , 0.5eγ γ= −  (23) 

where fγ and eγ are the static fusimotor input to the flexor and 
extensor spindles, respectively.  

The output signal to motoneuron is proportional to the 
tension within the fusimotor fiber, such as [2]: 

S

SE

A T
K

υ = i , 

where A is a constant. 

III. DESIGN OF CONTROL SYSTEM  

A. Process Description 
Consider the nonlinear musculoskeletal system described 

by the following discrete-time model 
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( ) [ ( 1) ( )

               ( 1) ( )] ( )
p y

u

y t f y t , ,y t n ;

u t , ,u t n tξ
= − −

− − +

"
"

 
(24) 

where ( ), ( )y t u t  are system output and input. { ( )}tξ  is the 
random sequence. It is assumed that nonlinear model can be 
generally described by the following locally-linearized and 
discrete-time model [13,14]: 

1 1( ) ( ) ( ) ( 1) ( 1) ( )A z y t B z u t N t tξ− −= − + − +  (25) 

where 1 1( ), ( )A z B z− −  are diagonal polynomial matrices in the 
backforward shift operator 1z−  with ,A y B un n n n< < , 

1 1
1( ) A

A

n
nA z I A z A z−− −= + + +"  

1 1
0 1( ) B

B

n
nB z B B z B z−− −= + + +"  

( )N t  denotes the model error including the unmodelled 
dynamics, nonlinearity of the system, which will be identified 
on-line by the neural network in the future work. We will 
consider ( )N t  in the design of the GPC control strategy, but in 
the following simulations and calculations, we will only 
consider the linear component.   

In equation (25), ( 1) ( )N t tξ− +  can be considered as [13]: 

1( 1) ( ) ( ) '( ) /N t t C z tξ ξ−− + = ∆  (26) 

where 1 1
1( ) 1 cn

ncC z c z c z−− −= + + +" , ∆ is the differencing 
operator 11 z−− , and '( )tξ  is an uncorrelated random sequence. 
Combining with equation (25), we obtain the CARIMA 
(Control Auto-Regressive and Integrated Moving-Average) 
model: 

1 1 1( ) ( ) ( ) ( 1) ( ) '( ) /A z y t B z u t C z tξ− − −= − + ∆  (27) 
This simplicity is the most cases, which occur in the control 

system design. However, in our design, we will take into 
account the nonlinearity component so that its influence can be 
effectively reduced.   

B. Output Predictor 
To build a j-step ahead predictor of ( )y t j+ , consider the 

following diophantine equation: 
1 1 11 ( ) ( ) ( )j

j jE z A z z F z− − − −= +       (28) 

where 1( )jE z−  and 1( )jF z− are polynomials uniquely determined 
by 1( )A z−  and j. 

1 1 1
1 1( ) 1 j

j jE z e z e z− − − +
−= + + +"  

11 1
0 1 , 1( ) a

a

n
j j j j nF z f f z f z− +− −

−= + + +"  
Premultiply equation (25) by 1( )jE z−  and use equation 

(28), we have 
1 1

1 1

( ) ( ) ( ) ( ( 1)

              ( ) ( ) ( ) ( )
j

j j

y t j E z B z u t j t j

F z y t E z t jξ

− −

− −

+ = + − + −

+ + +
      

(29) 

As 1( )jE z−  is of degree 1j − , 1( ) ( )jE z t jξ− +  is uncorrelated 
with other terms so that the optimal predictor, given measured 

output data up to time t and any ( ), ( )u t i N t i+ +  for 1i > , is 
clearly:   

1 1

1 1

ˆ( / ) ( ) ( ) ( 1)

                 ( ) ( 1) ( ) ( )
j

j j

y t j t E z B z u t j

E z N t j F z y t

− −

− −

+ = + −

+ + − +
    

(30) 

1ˆ( / ) ( ) ( ) ( )jy t j t y t j E z t jξ−+ = + − +       (31) 

In equation (30), ˆ( / )y t j t+  is a function of known signal 
values at time t and also of future control inputs which have yet 
to be computed. A second Diophantine equation may now be 
introduced to break up 1 1( ) ( )jE z B z− −  into two parts and 
distinguish between past and future control values.                             

1 1 1 1( ) ( ) ( ) ( )j
j j jE z B z G z z L z− − − − −= +       (32) 

where 1( )jG z− and 1( )jL z−  are polynomials. 

1 1 1
0 1 1( ) j

j jG z g g z g z− − − +
−= + + +"  

11 1
0 1 , 1( ) b

b

n
j j j j nL z l l z l z− +− −

−= + + +"  
Then the output prediction is given by: 

1 1

1 1

ˆ( / ) ( ) ( 1) ( ) ( 1)

                  ( ) ( ) ( ) ( 1)
j j

j j

y t j t G z u t j E z N t j

F z y t L z u t

− −

− −

+ = + − + + −

+ + −
      

(33) 

C. Cost Function of GPC 
Consider the following quadratic cost function: 

1 2

1

2

1

( ) { [ ( ) ( ) ( ) ( 1)]

            ( 1) }

p

p

N

p j j
j

N

J
j

J N E y t j r w t j H z N t j

u t jλ

−

=

=

= + − + + + −

+ + −

∑

∑
 

(34) 

where pN  is the prediction horizon. ( )w t  is reference signal. 
,j jr λ  are constant weights. 1( )jH z−  is a polynomial, whose role 

is to reduce the effect of ( )N t  on the closed-loop system, so 
that the control performance can be improved. 

D. Controller Design 
1) Control law of GPC 

A set of the output predictors is given by: 

1 1 1 1ˆ( 1/ ) ( ) ( ) ( ) ( 1)y t t G u t E N t F y t L u t+ = + + + −  
2 2 2 2ˆ( 2 / ) ( 1) ( 1) ( ) ( 1)y t t G u t E N t F y t L u t+ = + + + + + −  

#  
ˆ( / ) ( 1) ( 1)

                     ( ) ( 1)
p p

p p

p N p N p

N N

y t N t G u t N E N t N

F y t L u t

+ = + − + + −

+ + −
 

The above equations can be written in the matrix form:                           

( ) ( 1)Y GU EN Fy t Lu t= + + + −  (35) 
where 



         

ˆ( 1/ )
ˆ( 2 / )

ˆ( / )p

y t t
y t t

Y

y t N t

+ 
 + =  
 

+  

#         

( )
( 1)

( 1)p

u t
u t

U

u t N

 
 + =  
 

+ −  

#         

( )
( 1)

( 1)p

N t
N t

N

N t N

 
 + =  
 

+ −  

#   

0

1 0

1 2 0

0

p pN N

g
g g

G

g g g− −

 
 
 =  
 
  

# %
"

 

1
1

1
21

1

0( )
( )

[ ( )]

( )0
p

j

N

E z
E z

E diag E z

E z

−

−
−

−

 
 
 = =  
 
  

%
 

1
1

1
2

1

( )
( )

( )
pN

F z
F z

F

F z

−

−

−

 
 
 =  
 
  

#
                  

1
1

1
2

1

( )
( )

( )
pN

L z
L z

L

L z

−

−

−

 
 
 =  
 
  

#
 

From the above definitions and with 

( 1)
( 2)

( )p

w t
w t

W

w t N

+ 
 + =
 
 

+  

#         ( )jR diag r=     ( )jdiagλ λ=   

1[ ( )]jH diag H z−=  ( 1,2, , pj N= " ) 
Equation (34) becomes:          

( ) {( ) ( ) }T T
pJ N E Y RW HN Y RW HN U Uλ= − + − + +  

        2 2{ }
I

E Y RW HN U
λ

= − + +  
2 2{ ( ) ( ) ( 1) }
I

E GU E H N Fy t Lu t RW U
λ

= + + + + − − +  

where 2 T
Qx x Qx= . Optimizing ( )pJ N  with respect to U, we 

obtain               
1( ) [ ( ) ( 1) ( ) ]T TU G G G RW Fy t Lu t E H Nλ −= + − − − − +  (36) 

Using the receding horizon control philosophy, only the first 
element ( )u t  is actually implemented. That is, only the top row 
of U needs to be computed. 

Define 1 2[ , , , ]
pNα α α"  to be the first row of 1( )T TG G Gλ −+ , 

then             

1 2( ) [ , , , ][ ( ) ( 1) ( ) ]
pNu t RW Fy t Lu t E H Nα α α= − − − − +"  (37) 

2) Closed-loop System  
Equation (37) becomes: 

1
1 2 1 2{1 [ , , , ] } ( ) [ , , , ][ ( ) ( ) ]

p pN Nz L u t RW Fy t E H Nα α α α α α−+ = − − +" "

Then                

1 1

1 1

1 1 1 1

1 1

[1 ( )] ( ) ( ) ( )

      [ ( )] ( ) { [ ( ) ( )] } ( )

p p

p p

N N
i

i i i i
i i

N N
i

i i i i i
i i

z L z u t r z w t

F z y t E z H z z N t

α α

α α

− −

= =

− − − −

= =

+ = −

− +

∑ ∑

∑ ∑
 

 
 

(38) 

Premultiplying equation (25) by 1 1

1

[1 ( )]
pN

i i
i

z L zα− −

=

+ ∑ , and using 

(38), we obtain the closed-loop system: 

                                                                                           
1 1 1

1 1 1

1 1 1

1 1

1

1

[ (1 ) ] ( ) ( ) ( )

  [1 ( ) ] ( )

  (1 ) ( )

p p p

p p

p

N N N
i

i i i i i i
i i i

N N
i

i i i i i
i i

N

i i
i

A z L z B F y t B r z w t

z z L B E H z N t

z L t

α α α

α α

α ξ

− − −

= = =

− − −

= =

−

=

+ + =

+ + − +

+ +

∑ ∑ ∑

∑ ∑

∑

 

 
 
 

(39) 

3) Reduction of nonlinearity influence 
To reduce the influence of nonlinearities in the closed-loop 

system, the term containing ( )N t  should be as small as 
possible. In ideal case, it should be 

1 1 1

1 1

[1 ( ) ] ( ) 0
p pN N

i
i i i i i

i i

z z L B E H z N tα α− − −

= =

+ − + =∑ ∑  

That means                                 

1 1

1 1

( ) 1
p pN N

i
i i i i i

i i

B E H z z Lα α− −

= =

+ = +∑ ∑  
(40) 

Premultiplying (37) by 1( )B z−  and using (40) result in: 

1 2

1

1

( ) [ , , , ][ ( ) ( 1)]

            (1 ) ( )

p

p

N

N

i i
i

Bu t B RW Fy t Lu t

z L N t

α α α

α−

=

= − − −

− + ∑

"
 

Clearly, if 1( )B z−  is stable and invertible, then 

1 2

1 1

1

( ) [ , , , ][ ( ) ( 1)]

          (1 ) ( )

p

p

N

N

i i
i

u t RW Fy t Lu t

B z L N t

α α α

α− −

=

= − − −

− + ∑

"
 

(41) 

Assuming 1 2 pNr r r r= = = =" , then R rI= . From equation 
(39), r should be chosen as                   

1 1

1 1 1

( ) { (1) (1)[1 (1)] (1)}
p p pN N N

i i i i i
i i i

r B A L Fα α α− −

= = =

= + +∑ ∑ ∑  
(42) 

E. Neural Network Identifier 
Note that in (41) ( )N t is unknown, which will be identified 

on-line by a BP (backpropagation) net with 3 layers in the 
algorithm. Its structure is given in Fig.2. There are s units in the 
input layer, m sigmoidal neurons in the hidden layer and n 
linear neurons in the output layer. ,jp jw β  are the corresponding 
weights and thresholds between input and hidden layer, while 

,ij iw β  are those between hidden and output layer, for 
1, , ; 1, , ; 1, ,p s j m i n= = =" " " . 

 

 

 

 

 



         

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  BP net structure (where n=1) 

The network input vector is                

( ) [ ( ) , ( 1) , ; ( 1) , ( 2) , ;
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where, taking the ith input-output path into account 
1 2( i , , ,n )= " ,                                   

1 1( ) [1 ( )] ( ) ( ) ( 1)i i
i i iy t A z y t B z u t∗ − −= − + −  
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i
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i i
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i i
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+ − + + −

"
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(44) 

The teaching signal is                                                       

( 1) ( ) ( )i i id t y t y t∗− = −  (45) 
The weights and thresholds are updated using fast BP 
algorithm, which is improved by techniques of momentum and 
an adaptive learning rate to increase the training speed and 
reliability. Then the final output N̂( t )  can be obtained, which 
is the estimate of N( t ) . 

IV. CONCLUSION 
This short paper presented a fairly completed model of 

spinal neuro-musculoskeletal system in the human motor 
system and a new control system with Generalized Predictive 
Control and neural network was designed to control the spinal 
neuro-musculoskeletal system. The objective of this study is to 
give an artificial control system for paralyzed patient. Some 
simulative and clinical experiment will be done in future.  

APPENDIX (ANATOMICAL ARRANGEMENT) 
The anatomical arrangement of flexor and extensor at the 

elbow joint is shown in Fig. 3, in which the moment arm of the 
flexor and extensor are fh and eh , the lengths of musculo-tendon 
are MT

fL and MT
eL , and the velocities are MT

fV and MT
eV . The 

relations among them can be expressed by the physiological 
parameters of the elbow joint. 
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Figure 3.  shows the geometric relations between muscle-tendon variables 
and the joint angle. Point O represents the origin of the elbow joint. F2 and F1 
are the origin and insertion points of the flexor muscle; and E2 and E1 are 
origin and insertion points of the extensor muscle. θ is the elbow joint angle, 
with 0o corresponding to full extension, and 180o to full flexion. 
Counterclockwise rotation, i.e., flexion, is defined as positive. 

These geometric relations are incorporated into the 
equations of the model for integration of numerical solutions. 
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