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Abstract

The problem of quantifying muscular activity of the human body can be formulated as an optimal control problem. The current
methods used with large-scale biomechanical systems are non-derivative techniques. These methods are costly, as they require
numerous integrations of the equations of motion. Additionally, the convergence is slow, making them impractical for use with large
systems. We apply an efficient numerical algorithm to the biomechanical optimal control problem. Using direct collocation with a
trapezoidal discretization, the equations of motion are converted into a set of algebraic constraint equations. An augmented
Lagrangian formulation is used for the optimization problem to handle both equality and inequality constraints. The resulting min—
max problem is solved with a generalized Newton method. In contrast to the prevalent optimal control implementations, we
calculate analytical first- and second-derivative information and obtain local quadratic convergence. To demonstrate the efficacy of
the method, we solve a steady-state pedaling problem with 7 segments and 18 independent muscle groups. The computed muscle
activations compare well with experimental EMG data. The computational effort is significantly reduced and solution times are a

fraction of those of the non-derivative techniques. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Optimal control; Steady-state pedaling; Muscle activation; Direct collocation

1. Introduction

Human motion involves a complex coordination of
the many muscles of the body. Knowledge of muscular
activation patterns can lead to numerous clinical
benefits including functional neuromuscular stimulation
of paraplegics and rehabilitation. Additionally, to study
joint and bone mechanics it is necessary to quantify the
boundary loads, generated by muscular activity. In-
vasive in vivo methods are impractical and electromyo-
graphy (EMG) data are difficult to quantify. Computer
models offer a non-invasive and pliable method of
studying muscular control during locomotion.

The human musculoskeletal system is characterized
by redundant muscles—more than a single muscle may
serve to flex or extend a joint. Due to this redundancy,
optimization techniques are used to determine the role
of individual muscles. Optimal control techniques have
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been successfully used to quantify neuromuscular
excitations during human motion. The methods cur-
rently being used to solve the optimal control problem
are computationally expensive. The cost of numerous
numerical integrations of the differential equations,
together with the slow convergence behavior of these
approaches, results in a time-consuming effort, where
solution times are typically measured in days or months
on current workstations. To investigate muscular action
for large biomechanical systems, a more efficient
optimal control solution technique is necessary. In this
note, we present a computationally fast optimal control
solution algorithm. We illustrate the efficacy of the
method by solving a steady-state pedaling problem
using a 7 segment model with 18 muscles.

2. Problem statement

Finding the neural excitations necessary for steady-
state pedaling is described here using an optimal control
framework. In optimal control problems, the set of
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control functions that minimize a given measure of cost
is sought. This cost describes the task and is in general a
function of the control variables, u(f), and state
variables, y(f), at the final time and over the time
interval of interest,

T
muinJ = dp((ty)) +/0 L(y,u,t)dz. )

The state variables and control variables are related by
differential equations,

S,u,1) =0, )

describing the evolution of the state variables, y, in
terms of the system’s dynamics. Additionally, the
musculoskeletal model may be subjected to inequality
constraints of the form:

g, (u) =0, 3)

expressing bounds on the neural excitation control
variables.

3. Current methods

The problem of human neuromuscular control has
been solved for various aspects of gait (e.g., Chow and
Jacobson, 1971; Chao and Rim, 1973; Chou et al.,
1993), of pedaling (e.g., Levine et al., 1989; Raasch et al.,
1997), of kicking (e.g., Hatze, 1976; Audu and Davy,
1988), of jumping (e.g., Anderson et al., 1995; van Soest
et al., 1993; Selbic and Caldwell, 1996; Spagele et al.,
1999) and of other human motions (Ghosh and Boykin,
1976; Yamaguchi et al., 1995), using a legion of
numerical methods. Complex large-scale musculoskele-
tal optimal control problems are commonly solved with
non-derivative methods, such as numerical gradients
(e.g., Pandy et al., 1992) and simulated annealing (e.g.,
Neptune and Hull, 1998). These techniques treat only
the control variables as unknown; the state variables are
determined by integrating the differential equations of
motion using a set of control variables. The control
variables are discretized in time into a set of unknowns
using nodal values or polynomial interpolations. The
cost is then minimized with respect to these parameters
using nonlinear programming methods. Assuming a
nodal discretization with N discrete nodes in time and m
control functions, there are M = Nm optimization
parameters, U. Analytical derivatives cannot be calcu-
lated. Instead, the equations of motion are solved
repeatedly at each iteration. The gradient of the cost
function with respect to the optimization parameters is
calculated numerically based on finite-difference ap-
proximations such as forward differences,

ol 1

ou; b

(U + hie)) — J(U) + O(h) (i=1,..., M),
4)

where h; is the ith finite-difference interval and he;
(no sum on i) is a perturbation of the ith component
of U. These approximate derivative calculations
are costly, as the equations of motion must be solved
M times for each numerical evaluation of the
derivative.

4. Second-order direct collocation

To solve the large-scale biomechanical optimal con-
trol problem, we apply a method which is computation-
ally fast and easily amenable to equality and inequality
constraints on both state and control variables. We use a
direct collocation method to discretize the differential
equations. Direct collocation methods together with
nonlinear programming have been effectively applied to
optimal control problems in the field of trajectory
optimization (e.g., Hargraves and Paris, 1987; Enright
and Conway, 1991; Betts and Huffman, 1992). We treat
the resulting constrained optimization problem with an
augmented Lagrangian technique employing analytical
first- and second-derivative information, in contrast to
prevalent optimal control software. The augmented
Lagrangian formulation forms a saddle-point problem,
which is solved with a generalized Newton method,
resulting in local quadratic convergence.

The state and control variables are both treated as
unknown. These variables are discretized in time into a
set of nodal values,

Y = {y, 0} where y, (1) = y(t,), (%)
U = {ug(0)}j»*  where uy(1) = u(ty). (6)

The equations of motion are converted into algebraic
constraint equations in the unknown discrete variables
using direct collocation with a trapezoidal discretization
(Stoer and Bulirsch, 1980). At each temporal node, a, a
set of equality constraints, z,(y,,y,_1) = 0, representing
the discretized equations of motion, is formed. These
equations are assembled over the entire time interval
into a collection of the nodal equations,

Z =tz = 0. ™

Likewise, the cost function, J, is approximated by a
discrete version, J”, using numerical quadrature:

J(y,u) ~ J"(Y,U), (®)

dt
TV, U) = (Vi) + 5 | LY UD + LY Unyy)

Tnodes — 1 Tnodes —2
+4 > LY, U)+2 > LY, Uy,
aaC:VZCn aujgd

9
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The inequality constraints are discretized at each node
by replacing the continuous variables with their discrete
counterparts:

Gu(U) = {g(ua)} 25 > 0. (10)

Using the discretizations above, the optimal control
problem is converted into a constrained optimization
problem,

min Jh(Y,U), (11)
Z(Y,U)=0, (12)
Gy(U)=0. (13)

We reformulate the problem into an unconstrained one
using an augmented Lagrangian approach to enforce
both the equality and inequality constraints. The
optimization problem is transformed into a saddle-point
problem where the augmented Lagrangian is minimized
with respect to Y and U and maximized with respect to
lz and }.U,

. 1
min max A" =J"+ i, Z+-r.Z-Z
Y,U iziy 2

- — PR 14
3y Ml + 5 - disC LG, R (14)

where A4z is the vector of Lagrange multipliers corre-
sponding to the equality constraints, 4y contains the
Lagrange multipliers corresponding to the inequality
constraints on the U variables, and r. and r, are the
regularization parameters corresponding to the equality
and inequality constraints, respectively (Alart and
Curnier, 1991; Heegaard and Curnier, 1993). The
augmented multiplier vector, 4, is defined as

”U = Ay +1,Gy, (15)

and dist’[4};, R7] is the square of the distance of 4}, to
R, defined as

m
dist’[47, R7] = [max(0, —47,)", (16)

i=1

where m is the total number of nodal control variables.
We calculate analytical gradients and Hessians of the
augmented Lagrangian with respect to Y, U, Az and Ay.
The gradient, E, defined as

VyA"
VuA"
E(Y,U, iz, Ay) = ) (17)
VA
Vi A"
will be zero at a stationary point, {Y*,U*, 4,4}, i.e.,

E(Y*,U",3},4) =0. (18)

The Hessian is formed by taking the derivative of the
gradient E:

VE = VA"
ViyA"  VuVyA" VYV, NyA" YV, VyA
VyVpd"  VigA™ Vi, Vpd' V;,VyA"
VYA VYA Vi A ViV A
VyVi A" VyVi A Vi, NA V5, A
(19)

The Hessian is extremely sparse and well-suited for
efficient solutions to the linear problem. We use a direct
banded solver together with a reverse Cuthill-McKee
bandwidth reduction reordering scheme (George, 1971)
to improve the speed of the matrix solution procedure.
Due to the sparsity, the matrix solution time scales well
as the size of the system increases.

To solve the saddle-point problem, we update the
primal variables, Y and U, and dual variables, i, and
Ay, simultancously at each iteration, k, using the
Newton Raphson method,

XD = x®) 4 o0 gk, (20)
where X is the vector of all unknowns,
X =1{Y,U, Az, iy}. (21)

The Newton search direction, d®, at the kth iteration is
defined as

d® = [V X)) Vx A (X0, (22)
and is scaled by a line search factor o, defined by
min ¢(X® + ad®), (23)

where ¢ is the scalar function
D(X) = 3VxA'(X) - VxA'(X). (24)

5. Simplified pedaling problem

In order to compare the numerical efficiency of the
second-order collocation method with a numerical
gradient method, we solve a simplified steady-state
pedaling problem with a single control function in the
form of a net crank torque (see Fig.1). The cost
function expresses the variation in angular velocity of
the crank from the initial angular velocity:

J= / @) — ) dr, 25)
0

where ¢,(¢f) is the crank angular velocity. Both
approaches are able to accomplish well the goal of
maintaining a constant crank angular velocity. The
numerical gradient approach involves many fewer
unknowns, but is hindered by slow convergence and
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costly iterations. The direct collocation method,
although employing many more unknowns, converges
more quickly and in fewer iterations. The scaling of
solution times as the size of the system increases is
significantly more favorable for the direct collocation
method, indicating that this method is better suited to
solving large-scale optimal control problems. Fig.2
illustrates the total solution time scaling as the number
of nodes increases for the simple pedaling problem. The
difference in computational cost of the two methods
grows as the size of the system increases; the ratio of

Fig. 1. Simplified pedaling model.
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Fig. 2. Normalized solution times on a log scale from the numerical
gradient (x) and direct collocation (@) methods for the simple
pedaling problem versus the number of nodes. The normalized
solution cost for the collocation method ranges between 1 and 5,
while for the same problems the solution time for the numerical
gradient method runs between 6 and 1200.

solution times is 6 for the case of 21 nodes and 240 for
301 nodes.

6. Pedaling problem

The effectiveness of our control algorithm to predict
muscle activation during human locomotion was tested
by simulating a pedaling experiment. Pedaling was
chosen as a convenient model of human motion as it
avoids the effects of postural instability present in gait
and offers a simple way to vary loading, cadence and
limb phasing (Ting et al., 1999).

We solve a large-scale two-dimensional pedaling
problem with 7 segments and 18 muscles to determine
the muscle activation patterns for the coordination of
steady-state pedaling. Fig. 3 illustrates the nine muscle
groups per leg and the dynamical model with seven
generalized coordinates. The origin and insertion sites of
the muscles are based on the data of Delp et al. (1990),
with added geometric assumptions. The model is two
dimensional and, except for the rectus femoris and vasti,
the muscles are taken to act along straight lines.

The muscles are modeled using a Hill muscle model
with force—velocity and force—length dependence (Zajac,
1989). The total muscle force, FM, is the sum of an
active force, FCZ, produced in the Hill contractile
element, and a passive contribution, FFZ,

FMa(), 1" (1), 0" ()]

= FIEIM (0] + Fa(0), 1Y (0, 0™ (1)), (26)

where a(f) is the muscle activation, /M(¢) is the current
length of the muscle, and v™(¢) is the rate of shortening.
The excitation—contraction dynamics relating the neural
signals to the muscle activations is represented by
nonlinear first-order differential equations (Raasch
et al., 1997),

. { (u(t) — a())(cru(t) + ¢2)  u(?) = a(?),
a(t) = 27
(u(t) — a(n))c: u(n) <a(r),

where

cl = ! — ! y (28)
Trise Tfall

Cy) = ! y (29)
Tfall

and where u(?) is the neural signal, and 7,5 and 7 are
the rise and fall time constants.

We solve the optimal control problem to find
the neural excitation signals that produce steady-
state motion at 60 rpm against a workload of
120 J/cycle. The cost function is chosen so that at the
converged solution the angular velocity of the crank is
60 rpm and the pedal angles over the crank cycle
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(a)

PSOAS

(b)

Fig. 3. (a) Pedaling model dynamics. Shown are the generalized coordinates, ¢. (b) Pedaling model muscles. The muscles are shown for a single leg
only. The labeling corresponds to the following muscle groups: psoas (PSOAS), rectus femoris (RF), vasti (VAS), gluteus maximus (GMAX),
hamstrings (HAMS), biceps femoris short (BFsh), gastrocnemius (GAS), soleus (SOL) and tibialis anterior (TA).

match experimental pedal angle data from Ting et al.
(1999):

J = A f. [Wl(sl(l) - 51(0))2 + W2((q6([) — qlé’(G(l)))Z

Ty

+ (qr(0) — O +ws > i | do,
0
(30)

where s1(¢) is the quasi-velocity corresponding to the
crank angular velocity, g¢(¢) and ¢7(¢) are the feet angles,
¢4(1) and ¢4(7) are the feet angles corresponding to the
experimental pedal data, and w;—wj; are weights given
to the different components of the cost function. We
solve the problem for two cycles to ignore any spurious
behavior at the start time. Using a time step of 0.01 s,
the problem involves 30,000 unknown variables. The
optimal control simulation produces kinematics consis-
tent with the desired motion specified by the cost
function. We compare the muscle activation results with
experimental EMG measurements from Ting et al.
(1999) (see Fig. 4). Good qualitative agreement between
the calculated muscle activations and experimental
averaged EMG data is obtained. Both the phasing and
the magnitudes of the muscle activations match well
with the experimental results for the five coincident
muscles from the experiment and the simulation.

7. Discussion

We have presented a new algorithm based on optimal
control to solve the problem of finding the neural
excitation signals necessary for coordination of human
movement. Existing approaches to solve complex
biomechanical optimal control problems have typically
implemented numerical gradient or simulated annealing
methods. These algorithms, although capable of produ-
cing converged solutions, require lengthy computation
times. In contrast to these methods, the algorithm
described here introduces an optimal control solution
technique with the ability to solve large-scale biomecha-
nical systems in a dramatically decreased time. This
approach, using direct collocation and nonlinear pro-
gramming, differs fundamentally from the prevalent
methods adopted for neuromuscular control studies of
human locomotion. In most current techniques, the
control functions are treated as unknown and the state
variables are calculated from a given set of controls
using an explicit forward integration of the differential
equations of motion. The algorithm performance is
degraded by the expense of numerous forward integra-
tions and by linear convergence. We assume a
significantly larger group of variables, considering both
the state and control variables as unknown. All
quantities are discretized in time and the resulting
nonlinear programming problem is solved a single
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Fig. 4. Normalized EMG data for the five muscles, RF (rectus femoris), VAS (vasti), GAS (gastrocnemius), SOL (soleus) and TA (tibialis anterior),
together with calculated muscle activations for these muscles and for PSOAS (psoas), GMAX (gluteus maximus), HAMS (hamstrings) and BFsh
(biceps femoris short). The points are the averaged EMG values and the shaded areas represent one standard deviation. The solid lines are the

predicted muscle activations.

time. In this way, the cost associated with the multiple
solutions to the equations of motion is eliminated.
Moreover, we analytically form first and second
derivatives and are able to use second-order minimiza-
tion techniques with local quadratic convergence
properties.

We compared the solution times for a simplified
pedaling problem using the second-order direct colloca-
tion method and a numerical gradient method. The
computational effort was significantly less using the
direct collocation approach. This difference increased as
the size of the system grew, indicating that the second-
order algorithm is better suited to solving large-scale
neuromuscular control problems.

Using the proposed method, the solution time for the
steady-state pedaling problem was significantly shorter
than those using other optimal control algorithms. We
considered a musculoskeletal model with 18 indepen-
dent muscles, each represented by a Hill-type muscle
model with force—length dependence, force—velocity
dependence and activation dynamics. Ting (2000) used
a numerical gradient approach on a pedaling problem
with 9 muscles and 27 unknowns, representing a signal
onset time, a magnitude and a duration. The solution

took on the order of a week to converge. Neptune (2000)
solved a pedaling problem, also with 9 muscles and 27
unknowns, using simulated annealing in 3—4 days. Using
a second-order method, convergence times for our
pedaling model ranged from 20 min to 3 h, for the cases
requiring continuation steps to ensure global conver-
gence. The computer architectures in all cases were
similar modern workstations (e.g., single processor SGI
Octane).

The predicted activation histories compared well with
experimental EMG data, illustrating the possibility of
using this method for coordination studies on systems
with great complexity. This technique is well suited for
solving biomechanical optimal control problems with
physiologically accurate geometry, joints and muscles.
Possibilities for future studies include the simulation of
whole-body locomotion tasks under healthy and patho-
logical conditions.
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