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Abstract 
This paper presents real-time human motion anal- 

ysis based on real-time inverse kinematics. Our pur- 
pose is  to realize a mechanism of human-machine in- 
teraction via human gestures, and, as a first step, we 
have developed a computer-vision-based human motion 
analysis system. I n  general, man-machine ‘smart’ in- 
teraction requires real-time human full-body motion 
capturing system without special devices or markers. 
However, since such vision-based human motion cap- 
turing system is essentially unstable and can only ac- 
quire partial information because of self-occlusion, we 
have to introduce a robust pose estimation strategy, or 
an appropriate human motion synthesis based on mo- 
tion filtering. To solve this problem, we have devel- 
oped a method based on inverse kinematics, which can 
estimate human postures with limited perceptual cues 
such as positions of a head, hands and feet. In this pa- 
per, we outline a real-time and on-line human motion 
capture system and demonstrate a simple interaction 
system based on the motion capture system. 

1 Introduction 
Man-machine seamless 3-D interaction is an impor- 

tant tool for various interactive systems such as virtual 
reality systems, video game consoles, etc. To realize 
such interaction, the system has to estimate motion 
parameters of human bodies in real-time. Up to the 
present, as a method for human motion sensing, many 
motion capture devices with special markers or mag- 
netic sensor attachments have been employed. Since 
they need special marker-sensors, they often impose 
physical restrictions on the object. On the other hand, 
recently, fully image-feature-based motion capturing 
systems which do not impose such restrictions have 
been developed as a computer vision application[l]. 
Although the vision-based approach still has problem- 
s to be solved, it is a very smart approach which can 
achieve seamless human-machine interaction. More- 
over, it has a merit that it can acquire shape proper- 
ties and surface textures, which can not be measured 
by the former approach. Therefore, we are undertak- 
ing to develop an image-feature-based motion captur- 
ing system, giving consideration to alleviating scene 
constraints and physical constraints imposed on the 
system as little as possible. 
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To analyze human motion, image features such as 
blobs (coherent region)[l] [2] [3] or silhouette contours 
are usually employed. Since the contour-based im- 
age features essentially depend on human postures, 
they are appropriate only for the estimation of typ- 
ical postures. Therefore, inany researchers have de- 
veloped skin-color region tracking and stereo recon- 
struction methods using general region clustering. In 
particular, Pfinder[l] has shown that blob tracking is 
applicable for many real-time applications although 
the idea is not very new. Recently, purposeful human 
motion[4] employing the above blob tracking has been 
proposed. It is based on an analysis and synthesis 
framework with fast dynamics engine[5], and with an 
HMM based multiple behaviour model. The method 
is applied to upper body motion estimation, and tem- 
porary occlusion in the intersection between blobs of 
both hands or head-and-hand is handled, although the 
method does not solve the corresponding problerh. In 
gesture recognition systems, as well as in human mo- 
tion tracking, human motion primitives are also dealt 
with. However, in these systems, gesture represen- 
tation is symbolically defined and such symbol-based 
approaches are not appropriate for our purpose, which 
has to generate actual 3-D body postures, or 3-D po- 
sitions of head, arms, feet, etc. 

In this paper, we present vision-based human mo- 
tion capture system based on inverse kinematics, 
which can estimate human postures with limited per- 
ceptual cues such as positions of a head, hands and 
feet. We also focus on on-line implementation of the 
motion capture system using a PC-cluster (multiple 
PCs connected via high-speed network). 

2 System Overview 
The flow of our algorithm of real-time motion cap- 

turing is as follows: 

1. Detection of cues (perception) 

0 2-D color blob tracking for each view 
0 Calculation of 3-D color blob position using 

2. Generation of human figure full-body motion and 
rendering in the virtual space and calculation of 
the interaction (motion synthesis) 

multi-view fusion 
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Figure 1: Image processing modules on PC cluster. 

A prototypical system developed here is a real-time 
visually-guided-animation system, and make it real- 
time and on-line, ew have implemented the system on 
a PC cluster, which consists of multiple PCs connect- 
ed via a high-speed network, mynnet[7]. Each pipeline 
step is controlled by a synchronization mechanism[8]. 
Fig.1 shows the system flow and allocation of process- 
ing modules to PCs. 

Details of the processing modules are as follows: 

a) Perception Module: 

Image Capturing Module(1CM) These modules 
work as image-capturing and resizing modules 
(320 x 240). Each ICM, (v = 1, . . . , V ;  V is the 
number of cameras) sends image data to 2DPM,. 

2-D Processing Module(2DPM) These modules 
work as 2-D image processing modules (2-D blob 
tracking). Each 2DPM receives the image data 
from ICM,, and sends 2-D extracted image fea- 
ture data (positions of the center of gravity of the 
2-D blobs) to SDPM. 

3-D Processing Module( 3DPM) This module 
works as a 3-D vision processing module. It re- 
ceives and integrates the 2-D image feature data 
from 2DPM, (U = 1, . . . , N ) ,  and estimates 3-D 
model parameters (3-D positions of blobs). The 
estimated parameters are sent to the RRM. 

b) Human Motion Synthesis: 
Real-time Rendering Module(RRM) This mod- 

ule works as a real-time renderer of the virtual 
space. It receives the 3-D blob positions from 
SDPM and estimates 3-D pose and motion of the 
human body based on the received data. 

In the following sections, we will show details of the 
algorithms and some experimental results. 

3 Perception 
3.1 Color Identification 

In this system, skin color regions observed in an 
input image are interpreted as hand and face(head) 
blobs, regions with pre-acquired shoe or sock col- 
or as feet, and a region with shirt color as a torso 

blob(Fig.2). We assume the colors can be represented 
in a simple parametric form which is relatively robust 
for illumination changes[6]. In other words, we assume 
the color features (r,g,b) of each pixel are represented 
in the following quadratic equations of intensity a: 

P = R2i2 + Rli, 
c j  = G2i2 + Gli, 

& = B2i2 + Bli (1) 
For each blob color to be identified, six model param- 
eters, or coefficients, RI, . . ., B2 are estimated in ad- 
vance from a training data set, or real blob images. In 
color identification, the system computes the follow- 
ing error between observed color features ( r ,g ,  b )  of a 
pixel and the model color features ( P ,  6, &) calculated, 
according to  the above equation, from the intensity i 
of the pixel. 

(2) 
The system identifies the color of a pixel as a color 
giving the minimum error that is less than a certain 
threshold. 
3.2 2-D Blob Tracking 

lowing steps: 

error = ( r  - P ) ~  + (g  - + ( b  - &)2 

Blob tracking is accomplished according to the fol- 

1. A rectangle containing a human body is detected 
after background image subtraction and thresh- 
olding are applied. Then, regions with skin color, 
shoe/sock color or shirt color are identified by the 
above method. At the same time, the torso posi- 
tion (the center of gravity) is estimated. 

2. In the rectangle, the color-identified pixels are 
classified into blobs based on the similarity of 
their colors and positions to those of blobs de- 
tected in the previous frame. 

Here, we only assume that the result of background 
image subtraction is stable, and that cloth color is not 
similar to skin color. These assumptions can be easily 
met, particularly, in indoor or studio-like situations. 

Initial correspondence of color-identified regions to 
specific 2-D blobs, i.e., a face, hands and feet, is decid- 
ed when the system starts up, based on simple heuris- 
tics of the natural standing position. The heuristics 
employed here are as follows: 

The head is a skin color region upper-most in the 
detection rectangle. 

0 The left(right) hand is a skin color region which 
is on the left(right) in the detection rectangle. 

The left(right) foot is a pre-acquired color region 
which is on the left(right) in the detection rect- 
angle. 

This correspondence is also examined when the sys- 
tem fails to track the blobs. The error recovery pro- 
cess is quite important for online algorithms, and the 
decision process should be carefully designed. 
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3.3 Estimation of 3-D Blob Position 
When a 2-D blob is detected in two views, the 3- 

D position of the blob can be calculated by a stereo 
method. However, since self-occlusion often occurs, 
with only two views it is almost impossible to esti- 
mate all parts of the moving body for a long period. 
Therefore, multi-view fusion is indispensable. In the 
blob tracking, precise estimation is not required and, 
therefore, we have employed a simple but fast multi- 
view fusion strategy. The algorithm of 3-D blob posi- 
tion calculation adopted here is as follows: 

Selection of views According to the visibility of 
views, reliable views, or views whose visibility is 
higher than a certain threshold, are selected for 
each blob. The visibility is defined as the number 
of observed pixels in each blob, and it can indicate 
whether occlusion is occurring or not. 

Calculation of line of sight According to camera 
calibration information, for each of the selected 
views, a line of sight, or a vector from the origin 
of the camera coordinate system to the center of 
gravity of the blob, is calculated. 

Integration of multi-view information 
Referring to the acquired lines of sight, the 3-D 
position of each blob is calculated. 
When a line of sight calculated for the most reli- 
able view is parameterized as TI = 01 +tldl(tl is 
a parameter), and the rest of the lines of sight as 
T, = 0, + t,d, (t,  is a parameter; j = 2 , .  . . , J ) ,  
the intersection point T is approximated as a 
point on the line of sight TI whose average dis- 
tance to the other lines of sight is smallest in the 
sense of the least squares error. 

where 

The calculated point T corresponds to the 3-D 
blob position (Tz, Tyl Tz)T.  

4 IK-based Mot ion Synthesis 
Information acquired in the perception process is 

just 3-D positions of blobs, which correspond to a tor- 
so, a head, hands and feet of a human body. Therc 
fore, to estimate the body posture from these cues, the 
number of which is less than the degree of freedom of 
the body, we have to solve the inverse kinematics[9]. 
In our case, a human body is represented as a multi- 
part articulated object, or as 14 parts with 23 degrees 
of freedom (see Fig.3), and the 3D blob positions are 
given as the goal positions, or the end effectors. Of 

Figure 2: 2-D blob position estimation results. 

Figure 3: Our human figure model geometry. 

course, there are approaches in which knees and el- 
bows are detected based on contour analysis, or sil- 
houette analysis, but they cannot stably detect those 
positions for many postures. 

The goals of the inverse kinematics which we have 
designed can be summarized as follows: 

0 Inverse kinematics of four connecting links, which 
are two arms and two legs, can be solved in real- 
time. 

0 Even when goal positions (3-D blob positions) 
given by the perception module are not precise, a 
solution can be derived to some extent. 

0 The solution gives us continuous and natural- 
looking motion of the human body. 

In our case, as mentioned above, the 3-D blob po- 
sitions acquired by the perception modules are some- 
times imprecise. In other words, the goal positions 
are sometimes established at positions where physi- 
cally possible solutions cannot be derived. Therefore, 
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where L1 4 2  I; are the lengths of link 1, link 2, and 
the distance between the origin of link 1 and the goal 
position. 

4.2 Estimation of Torso Posture 
Torso posture consists of two elements, the axis of 

the torso and the pan angle around the axis. The 
axis of the torso is an axis connecting the centers of 
gravity of a head blob and a torso blob and is defined 
as follows: 

Figure 4: Definition of a goal with arm direction. 

R , ~  = - arcsin (9) 

we interpret each of the given goals as the combina- 
tion of the direction of the goal and the distance to the 
goal. When the goal position is located where a phys- 

ble solution can not be derived, we find a 
which the direction of the connecting link 

coincides with the goal direction (see Fig.4). 

g y  = T ~ R ~ ( o , R ~ ~ ,  R,~)R~'(R,~',o,o) 
T ~ I R ~ Z  (R$,  R l1, o)R~; (R$ , 0, R,~; ) (4) 
T ~ ~ R ~ Z ( O ,  0, R,&) t e  

The pan angle (i.e. human body direction), is d- 
ifficult to estimate correctly from perception results, 
or blobs. However, since we use multiple cameras, we 
can estimate the body pan angle for a variety of body 
postures. We estimate the pan angle based on the di- 
rection that both feet point, assuming that both feet 
touch the ground plane or that they are very close to 
the ground plane: 

where gy = (g,",gr,gF,l)T is a goal vector(i = 

1, . . ,4 ) ;  Tb, Rb and Rb' are matrices representing 
the body pose; Til, Rzl R':, T12 and R12 are pose 
matrices related to link 1 1 L1 in Fig.3)and link 2 (L2) 
respectively; te is a translation vector related to the 
end-effector position of L2. 

Here, some rotation elements are represented in two 
matrices-R1l and R1; of L1, for example. We have 
divided the original rotation matrix into two matrices 
to simplify analytical solution of our inverse kinemat- 
ics. In R, R,, R,, R, represent roll, pitch, and yaw 
angle respectively. 

4.1 Analytical Solution Using Real-time 

Analytical solution of the inverse kinematics previ- 
Inverse Kinematics 

ously mentioned is as follows': 

The characteristics of our method can be summa- 
rized as follows: 

0 Since only two-link inverse kinematics is solved, 
it can be used for real-time pose estimation of 
human bodies. 

0 Parameters which are not represented explicitly 
in the solution of the inverse kinematics, such as 
the pitch of elbow (Rzl;)  (we call it the character- 
istic angle), can be used to control precise human 
body pose if necessary2 

5 Implementation and Experiments 
Ryll = - arccos ( gz - T ~ l l  ) 
R:' = -arctan (" - "") 

(5) 
Ilg - TZIII 5.1 Characteristic Angle Estimation from 

In order to investigate features of the characteris- 
tic angle Rz';, we measured its real angle for various 
arm and leg directions using a marker-based motion 
capture system[lO], in which 4 markers are attached to 

Real Motion Capture Data 
( 6 )  

gx - T X 1 l  

(7) 
21n this paper, we have used a pre-acquired constant value 

based on measurements of limb postures using another motion 
capture device. See5.1. 

1 R,'; = arccos (L? +2& L22 

]All the coordinates here axe represented in the local coor- 
dinate system of the torso. 
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Figure 5: Samples of input images and estimated 3-D 
model views:(a)right arm,(b)right leg. 

both shoulders(hips), the elbows(ki1ees) and the hand- 
s(feet) of the right arm(1eg). Fig.5(a)(b) shows sam- 
ples of input images and of reconstructed 3-D model 
views, which poses are estimated by our IK method. 
Fig.7 shows 3-D position trajectories of a right elbow 
and a right knee. Fig.6 shows plots of the character- 
istic angle RZ1; with various arm and leg directions 
(latitude 77 and longitude w ,  see Fig.4). From this re- 
sult, we can suppose that the characteristic angles can 
be approximated by constant values. In fact, for ex- 
ample, the errors between the elbow positions of the 
human body generated referring to measured angles 
and ones generated with a constant angle, which is a 
mean value of the measured angles, 16[deg] in (a), are 
small enough to reconstruct natural poses of the mod- 
el. In case of (b), or in case of the right leg, the mean 
value of the characteristic angles is 236[deg]. 
5.2 Real-time Interaction between Hu- 

Here, the human figure motion generator men- 
tioned above is applied to Visually Guided 30 Ani- 
mation, or a real-time (video-rate) online interaction 
system in a virtual space. The example shown in Fig.8 
shows a user, or a target object, which is visualized as 
an avatar in the virtual space, kicking a virtual soc- 
cer ball. Its interaction is simply realized by detecting 
collision of the ball and the body parts and by simulat- 
ing rebound of the ball from the body. In this case, a 

man and Virtual Environment 
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Figure 6: plots of characteristic angle: (a)right arm, 
(b)right leg. 

delay of about 0.2 second is inevitable because of the 
latency of the pipelined implementation. Therefore, 
in these ~hots(Fig.8)~ the avatar posture is slightly d- 
ifferent from that of user. 

6 Conclusions 
In this paper, we have shown a real-time human 

motion capturing without special marker-sensors. We 
have adopted multi-view fusion and inverse kinemat- 
ics to realize full-body motion analysis from a limited 
number of perceptual cues. Since the system works 
in real-time and online, it can be applied to various 
real-virtual applications such as smart man-machine 
3-D interaction. In future work, we will achieve more 
natural motion of the human model by employing e- 
motional and dynamical filtering. 
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