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Simulating Closed- and Open-Loop Voluntary
Movement: A Nonlinear Control-Systems Approach
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Abstract—In many recent human motor control models,
including feedback-error learning and adaptive model theory
(AMT), feedback control is used to correct errors while an inverse
model is simultaneously tuned to provide accurate feedforward
control. This popular and appealing hypothesis, based on a
combination of psychophysical observations and engineering
considerations, predicts that once the tuning of the inverse model
is complete the role of feedback control is limited to the correc-
tion of disturbances. This hypothesis was tested by looking at the
open-loop behavior of the human motor system during adaptation.
An experiment was carried out involving 20 normal adult subjects
who learned a novel visuomotor relationship on a pursuit tracking
task with a steering wheel for input. During learning, the response
cursor was periodically blanked, removing all feedback about the
external system (i.e., about the relationship between hand motion
and response cursor motion). Open-loop behavior was not consis-
tent with a progressive transfer from closed- to open-loop control.
Our recently developed computational model of the brain—a
novel nonlinear implementation of AMT—was able to reproduce
the observed closed- and open-loop results. In contrast, other
control-systems models exhibited only minimal feedback control
following adaptation, leading to incorrect open-loop behavior.
This is because our model continues to use feedback to control
slow movements after adaptation is complete. This behavior
enhances the internal stability of the inverse model. In summary,
our computational model is currently the only motor control
model able to accurately simulate the closed- and open-loop
characteristics of the experimental response trajectories.

Index Terms—Adaptive inverse control, internal models, motor
control modeling, motor learning, tracking task.

I. INTRODUCTION

WHEN controlling voluntary movement the human
central nervous system (CNS) acts as a hybrid feedfor-

ward/feedback adaptive control system. Multimodal sensory
information is employed at several levels in the motor hierarchy
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to modify outgoing motor commands, resulting infeedbackor
closed-loopcontrol [1].Feedforwardor open-loopmechanisms
are also employed extensively, particularly for the execution of
fast movements where feedback propagates too slowly to affect
the motor response [2].

The influentialfeedback-error learning(FEL) [3] model sug-
gests that multiple feedback controllers exist at the spinal, brain-
stem and cerebral levels which operate in parallel with feedfor-
ward pathways containing adaptive inverse models. Inadaptive
model theory(AMT) [4] feedback and feedforward influences
are combined in series [5]. In these and other similar models,
feedback control is used to correct errors while an inverse model
is simultaneously tuned on-line for accurate feedforward con-
trol. Thus, both models predict that after extensive practice at a
motor task, once an accurate inverse model has been acquired,
the role of the feedback pathways is limited to the correction of
disturbances. If feedback of a motor task is withheld then perfor-
mance should remain unaffected, except for random drift caused
by noise. This is because in the absence of feedback, and after
extensive practice, both models rely exclusively on their inverse
models to generate the motor command.

We have developed a novel nonlinear implementation of
AMT which offers an alternative prediction. Our implementa-
tion is able to simulate the human capacity to control nonlinear
dynamic systems like the musculoskeletal system. In contrast
with other AMT implementations and with FEL, our model
predicts that the feedback pathways remain active and play a
central role in generating the primary motor command, even
after extensive training at a motor task. AMT suggests that the
CNS forms an accurate nonlinear forward model which is then
inverted in some fashion. In our implementation, the forward
model is subsequently inverted by placing it in an internal
feedback loop [6]. This method is parsimonious as it requires
few additional parameters over those required to form the
forward model. In principle, the loop gain needs to be very high
to generate an accurate inverse of the forward model but the
loop and, hence, the inverse, become increasingly unstable as
the feedback gain is increased. Hence, an approximate inverse
is generated by lowering the gain of the internal feedback loop
used for inversion. For optimum overall performance, inaccura-
cies in the inverse are restricted to low frequencies, allowing the
feedback pathways to contribute usefully. This is achieved by
adding derivative and integral components to the loop gain. The
closed-loop behavior of our model is, therefore, very similar to
existing models but its open-loop behavior is substantially dif-
ferent. Our model predicts that open-loop tracking is inaccurate
at low frequencies and progressively more accurate at higher
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frequencies. Other AMT implementations and FEL predict that
open-loop behavior, once any random drift effects have been
eliminated, is particularly accurate at low frequencies.

An experimental study, looking at human manual tracking be-
havior under both closed- and open-loop conditions, has previ-
ously been published [7]. Here, we re-evaluate the data from
this study to test whether the open-loop tracking behavior, the
key observable difference between our model and other motor
control models, is observed in human behavior. We also intro-
duce our implementation of AMT in additional detail. The study
data shows that human open-loop tracking late in learning ex-
hibits high-pass amplitude characteristics and is particularly in-
accurate at low frequencies, in agreement with the predictions
of our model. This suggests that the feedforward pathways of
the motor system might employ an approximate inverse model
like that used in our simulation.

II. HUMAN TRACKING STUDY

Twenty human subjects (13 male and 7 female) were trained
on 1-D pursuit tracking task using steering wheel for input and
a computer monitor for visual feedback. Rotation of the wheel
moved an arrow horizontally on the screen and subjects were
required to follow a target moving vertically down the screen.
Full response feedback was provided for the initial interval of
each tracking run, during which subjects partially learned to
control a novel visuomotor relationship. Feedback was then
removed by blanking the response arrow. This training and
blanking cycle was repeated several times until no further
closed-loop performance improvement was evident. Response
trajectories were recorded at 60 Hz, thereby providing a record
of closed- and open-loop tracking behavior at discrete intervals
during the adaptation process. This was repeated for two dif-
ferent visuomotor relationships (static nonlinear and dynamic
linear). The screen setup is shown in Fig. 1.

The experiment comprised 25 consecutive 103-s tracking
runs separated by rests of 20-s duration. For each run the
subject was asked to “keep the point of the arrow on the line as
accurately as possible.” The subject was then told that the arrow
would disappear late in the run and that they were required to
continue the task by estimating the position of the arrow.

All subjects were initially asked to control a simple zero-
order external system (i.e., wheel angle proportional to response
pointer position). These practice sessions were to allow sub-
jects to learn as much about the target and tracking system as
possible. This facilitates the assumption that only the external
system was learned in the following runs. Ten runs of the zero-
order task were performed, after which learning plateaued. At
this point the stochastic characteristics of the target signal, the
kinematic and dynamic properties of the steering wheel, and the
wheel-to-display relationship are considered to have been max-
imally learned.

The subjects were then asked to control a new visuomotor
relationship, implemented by altering the characteristics of the
external system. Subjects were split into two groups, labeled A
and B. Both groups were required to train on their new external
system for 15 runs. This duration was selected to be long enough

Fig. 1. Preview random tracking task. Subject alters horizontal position
of arrow to keep point on descending target waveform. Arrow moves along
horizontal line. The small box at intersection of line and target emphasizes the
current target position.

to characterize any learning trend but not so long as to introduce
noticeable fatigue.

Group Acontrolled a linear dynamic system. The dynamics
were produced by passing the motor response through an infinite
impulse response (IIR) filter: a third-order Chebyshev Type I
low-pass filter with cutoff frequency of 3 Hz.

Group Bwas required to learn a static nonlinear system. The
system was a cubic function of input angle, scaled to provide a
challenging variation in gain while remaining controllable. The
function was displaced from center to increase the difficulty of
the task by avoiding symmetry. The function used was

(1)

where is the steering wheel angle in degrees (centered at 90)
and is the target position relative to the left edge of the screen
(millimeters).

The target signal comprised two consecutive sections as fol-
lows:

1) Unblanked Training Signal:68 s of a pseudorandom
waveform generated from superposition of 50 sinusoids of
equal amplitude and equally spaced in frequency with random
phase from 0.007 Hz up to 0.6 Hz, 75% full scale deflection.

2)Blanked Assessment Signal:Identical to the first 28 s of the
training signal except for removal of feedback to the subject by
turning off the response arrow.

The two sections were combined and separated by a 7-s in-
terval where the target returned to the center of the screen. All
three sections combined to form a single continuous 103-s target
signal, which was used for all runs in the experiment. The sub-
ject was also presented with an 8-s preview of the target to im-
prove prediction of the target signal.

III. M ODEL STRUCTURE

In AMT, the brain is considered to operate continuously to
translate an intermittently planned trajectory of desired sensory
consequences into smooth coordinated movements. This senso-
rimotor transformation is achieved by passing the desired trajec-
tory through a series of inverse models implemented as adaptive
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Fig. 2. Simulation structure. Open-loop tracking achieved by moving switch to upper-most position.T is the target signal,R� is the desired trajectory,MR is
the motor response,R is sensory feedback of the actual response and^R is the predicted response. OTG is an intermittent optimum trajectory generator (see [12]).
Afferent� and efferent� delays, representing lumped transmission and processing delays respectively, are partially compensated for by forward model observer
P and target predictorTP .

neural filters. The adaptive filters control the appropriate timing
and amplitude of muscle output.

Neilson et al. [4] proposed that the overall inverse model
is physically realized in the form of three serially cascaded
multiple-input multiple-output nonlinear dynamic inverse
models. These models are inverse representations of three
levels of the human plant—the muscle control system (MCS),
the biomechanical system (BM), and the external system (E).
These three subdivisions are delineated by the four levels of
continuously available sensory feedback in the human motor
system: efference copy of outgoing motor commands, tension
feedback from Golgi tendon organs, joint angle information
from various modalities including kinesthesia and vision and,
finally, multimodal feedback on the sensory consequences of
the movement. For convenience the resulting inverse models
are termed MCS , BM (which together compose aninverse
dynamics model) and E (the inverse kinematics model).

In a previous implementation of AMT [4], linear adaptive fi-
nite impulse response (FIR) filters were employed to mimic the
formation of the nonlinear internal models thought to exist in
the brain. One of the principal advantages of forming a linear
model is that the corresponding inverse model can be deter-
mined analytically from the parameters of the forward model.
For example, a linear FIR filter with taps can be expressed
as where is the filter output,

is the filter input, and is the th filter tap weighting.
The inverse of this filter, that is a filter generating given

, can be calculated by simply rearranging to give
.

Unfortunately this initial linear implementation of AMT,
while powerful in its ability to predict motor behavior, is
incomplete because the human CNS is required to control non-
linear dynamic systems. The human musculoskeletal system
exhibits complex and highly nonlinear dynamics [8], [9] which
a linear filter model cannot capture. Additionally, the successful
control of nonlinear dynamic mechanical systems, such as
bicycles, motor vehicles, and jet aircraft, is known to be within
the normal range of human ability. The same simple analytical

relationship between the forward and inverse model is not, in
general, available when the forward model is represented in
a nonlinear adaptive filter. The accurate online formation of
an inverse model of a nonlinear system from input and output
data is a difficult problem. There have been numerous efforts
to find a robust neurobiologically plausible solution [3], [10],
[11], [13].

The primary distinction between our model and the linear im-
plementationofAMTisthat thelinearadaptivefiltersarereplaced
with adaptive nonlinear dynamic filters. This necessitates the se-
lection of an appropriate filter structure which maintains the on-
line adaptive performance of AMT while capturing the nonlinear
learningcapacityof theCNS.Since thechangetononlinear filters
invalidates the analytic inversion process used to form an inverse
model from a forward model, the structure of the AMT model re-
quires additional alteration. Our model includes circuitry to ap-
proximate the inverse of the forward model and, consequently,
must also include circuitry to compensate for any errors in the re-
sulting inverse by using the actual motor command and the for-
ward model to generate a prediction of the actual response.

A. Overall Structure

The structure of the new model is shown in Fig. 2. Like
other AMT implementations, our model includes a feedback
controller called anoptimum trajectory generator(OTG).
The OTG implements receding-horizon optimal control by
intermittently issuing optimum corrective movements based
on stochastic prediction of the target and response trajectories
(see [12]). The OTG parameters used here were set to typical
values as determined experimentally by Sriharan [13]. The
overall simulation operated at a discrete sampling rate of
20 Hz in accordance with the AMT model [4]. The efferent
delay represents the time between the generation of a motor
command in the brain and the first measurable force in the
muscles. This was set to 50 ms in the simulation. The
afferent delay, representing the remaining loop delay (including
visual processing time), was set to 100 ms. The delay
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Fig. 3. Forward model observer structure. The response input can be used for state estimation allowing more accurate response prediction.� is the incoming
(afferent) delay and� is the outgoing (efferent) delay.

values were quantized in accordance with the 50-ms sampling
period of the simulation and are within the normal range quoted
in the literature [14], [15].

B. Nonlinear Dynamic Filters

Locally recurrent neural networks (LRNNs) act as adaptive
filters in our nonlinear AMT implementation. LRNNs are
capable of dynamically trading off representation of temporal
depth for memory resolution [16] which means that the tem-
poral features of the problem at hand do not need to be known
a priori. It is worth noting that the LRNN filters could be
substituted by more realistic models of the cerebellum [17] or
basal ganglia [18] as they become available.

The LRNN structure used in simulation employs neurons
with somatic, as opposed to synaptic, adaptive IIR dynamics
[19]. The neurons employ sigmoidal activation functions,
mimicking the expected activation for a functional group of
biological neurons having a Gaussian distribution of activation
thresholds [20]. These neurons were formed into a three-layer
fully connected neural network. A gradient descent adaptation
algorithm was developed, using dynamic back-propagation
techniques as suggested by Back and Tsoi [21], to train the
resulting network. To maintain an acceptable on-line learning
rate, an adaptive linear circuit is maintained in parallel with
this nonlinear structure.

In the simulations presented here, each LRNN consisted of
16 neurons with adaptive second-order dynamics in the hidden
layer and a single-output neuron with a linear threshold. There
were one or two inputs to each network depending on its func-
tion in the model (there were two inputs in the case of the for-
ward model observer). The parallel adaptive linear filter had a
buffer depth of 3 s.

C. Adaptive Forward Modeling

Our model employs a nonlinear forward-model observer
(FMO) which represents the controlled system as a
function not only of its current input signal, as in the linear
AMT implementation, but also as a function of its previous
output signals. Thus, observer models include an additional
input which can be seen as providing an estimate of the current

state of the plant. In our model, the forward model observer
expresses the controlled system as a function of its input signal,
the motor response , and the previous sample of the
response signal

(2)

where is the simulation step size.
The required structure for the implementation of a forward

model observer within our AMT implementation is shown in
Fig. 3. In practice, all that is required is the addition of a second
input to the forward model for the delayed response signal,
which can be seen as a state estimation input. The LRNN previ-
ously described is provided with an additional input for the de-
layed sensory response signal. Hence,becomes a nonlinear
dynamic multiple-input single-output function.

D. Adaptive Stochastic Prediction

AMT hypothesizes that the stochastic properties of the
target and disturbance signals are modeled adaptively in neural
circuitry so that an optimum prediction of the future values
might be generated [5], [22]–[24]. In the linear implementation,
a moving-average stochastic model of the change in signal
location is formed online using adaptive linear FIR filters. In
our implementation, this idea is generalized and an adaptive
nonlinear filter is employed to model the stochastic properties
of the signal. The predictor structure is also extended to include
an autoregressive component for added generality [25]. The
resulting predictor structure is a nonlinear moving-average
auto-regressive (NARMA) predictor.

In moving to a nonlinear predictor, it becomes impossible
to model the change in signal location by differentiating, as
in other implementations, because a nonlinear model requires
absolute position information. Conversely, moving to a model
based entirely on absolute position was found to produce un-
acceptable performance [26]. This difficulty was solved by di-
viding the predictor into parallel linear and nonlinear channels
and providing these with differential and absolute inputs respec-
tively. The outputs of the parallel channels are added together
and the error signals adjusted accordingly.
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Fig. 4. Circuitry for forming a NARMA stochastic one-step predictor. The circuitry uses a novel combined parallel differential-linear and absolute-nonlinear
structure.

A general NARMA model for a stochastic signal given
a Gaussian noise input can be expressed as

(3)

At time only the term is unknown. We make
the assumption that . Since has zero
mean this is true wheneveris an odd function, in which case
the optimum prediction of at time is simply

(4)
The resulting network exhibits improved performance in pre-

dicting nonlinear stochastic signals without any degradation in
performance for predicting linear signals [26]. The complete
network for the one-step NARMA predictor used in the model
is shown in Fig. 4.

E. Adaptive Disturbance Compensation

In AMT, the disturbance signal is modeled as a stochastic
process added to the output of a deterministic plant. This al-
lows the disturbance component of the afferent information to
be identified by subtracting the estimated reafference, generated
by the forward model, from the actual afference. The resulting
disturbance signal is called the exafference, that part of the sen-
sory feedback “generated by external inputs.” The future ex-
afference is then predicted using the stochastic methods men-
tioned in Section III-D.

The use of a FMO effectively alters the definition of exaffer-
ence in our implementation. Exafference now becomes that part
of the response signal which is unpredictable given the current
state of the plant. The predictable component, which previously
remained part of the exafference, must now be compensated for
and this is achieved by the adaptive response predictor. The dis-
turbance compensation structure is included in Fig. 2.

F. Adaptive Response Prediction

In previous implementations of AMT, the only adaptive feed-
back control element is the stochastic disturbance predictor [24].
Response prediction, employed by the OTG for planning re-
sponse trajectories, is based on previously planned responses.
Since, in the case of linear AMT, the inverse model is the exact
inverse of the forward model there is nothing to be gained by
passing the motor response through the forward model. This re-
sulting signal is simply the desired response produced by the
OTG. Consequently, the response prediction system in linear
implementations of AMT is not an adaptive process.

In a nonlinear implementation, however, the inverse model is,
in general, only an approximate inverse of the function defined
in the forward model. Hence, the output of the forward model
constitutes a more accurate estimate of the actual response than
the desired response. This information must be provided to the
OTG for use in trajectory planning.

Assuming a forward model observer is available, apredictive
cascade[9] of these models can be formed to generate the re-
sponse predictions from to in steps of
size in time. These accurate predictions can then be used by
the OTG in planning future sub-movements. The predictive cas-
cade of forward models is suitable for predictions up to ,
up to which time motor response information is available. For
predictions beyond this, up to one planning time periodahead
of , the existing method based on the preplanned desired
response is used for prediction.

G. Nonlinear Inversion

In the linear AMT implementation, the forward model is
inverted analytically to generate an inverse model. This tech-
nique cannot be employed in a nonlinear generalization as a
nonlinear mapping cannot, in general, be inverted analytically.
The inverse must be estimated using function approximation
techniques. The feedback-error learning [27] scheme ele-
gantly solves this problem, forming an inverse model directly
without the necessity for a forward model, however, the same
scheme cannot be employed within the AMT architecture [26].
Jordan’s forward and inverse modeling scheme [10] also solves
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Fig. 5. Proposed nonlinear inversion scheme. The feedback gainK includes
proportional, integral and differential components.

the problem, but in a relatively unrealistic fashion requiring
backpropagation through a forward model. The problem is
addressed in our implementation by embedding the forward
model in an internal feedback loop, as first suggested by Miall
et al. [6]. However, the high-gain feedback loop approach
advocated by Miall was found to be unstable under typical
simulated conditions. Consequently, a relatively low loop-gain
as specified by

(5)

where , , and are adjustable gain parameters andis the
feedback loop error, was employed to enhance the stability of
the loop (see Fig. 5). No other use of a PID gain to improve
the stability of an internal feedback loop was found in the lit-
erature. This approach effectively trades the accuracy of the in-
verse for internal feedback loop stability. The performance of
the overall system was found to remain acceptable due to the
presence of feedback introduced in the trajectory planning cir-
cuitry. Since this technique only requires the storage of a for-
ward model for each system, instead of both a forward model
and an inverse model, the approach is more parsimonious than
less direct methods (see, e.g., [10]).

In simulation, the choice of gain of the feedback loop used
for inversion of the forward model had a strong impact on be-
havior. In the work presented here, it was assumed that the loop
gain was constant during the simulation. A small integral com-
ponent was necessary to eliminate steady-state error in the in-
verse model. Consequently, 0.05 was used for all runs and
is not explicitly quoted in the following results where loop gain
parameters are mentioned. and were tuned manually to
achieve optimum performance.

IV. SIMULATION

A full simulation of the experiment described in Section II
was carried out using our AMT implementation. Response
cursor blanking was simulated by removing response feedback

from the tracking simulation. Losing response feedback
could reasonably be expected to cause the controller to stop
making corrective movements. This implies the complete disen-
gagement of the feedback control pathways. In the model, this

can be achieved by replacing the predicted response
with the desired response (see Fig. 2). Because
the error between desired and actual response observed by the
OTG becomes zero no corrective movements are executed.
Note that the OTG continues planning optimum trajectories but
based only on target signal predictions. Adaptation was also
halted during blanking to prevent catastrophic unlearning.

Noise was modeled in closed- and open-loop by adding band-
limited Gaussian white noise to the motor response

. The variance of the Gaussian white noise generatorwas
set to zero for noise-free simulations. Noise was added to both
the differential and absolute pathways of the model. When the
differential pathways are integrated this results in some random
drift at the output as observed experimentally.

A. Initial Parameters

The practice runs were simulated with the target predictor and
internal model parameters initialized to small random values.
The parameters reached after ten simulated runs in control of the
zero-order practice system were then used in the ensuing sim-
ulations. This ensured that the simulator was in approximately
the same state as the experimental subjects at the beginning of
the experimental runs.

In the experimental design, care was taken to eliminate target-
trajectory prediction as a confounding source of learning. Con-
sequently, the target predictor was assumed to have been accu-
rately tuned from the beginning of the simulation of the exper-
imental runs. The predicted values to ,
where is the prediction depth, were set to their exact values.

B. Simulation Procedure

The simulation began with ten practice runs as performed in
the experimental study. In these a simple zero-order gain was
assigned as the external system. The adaptation coefficient of
the forward model was set to 0.0015 which was found, by
trial and error, to approximate the learning rate observed during
the experimental practice. It was important thatbe set so that
learning had essentially plateaued after the final (tenth) run. The
internal feedback loop-gain was set to 10 to provide ac-
ceptable inverse model performance during the initial learning
process. This arbitrary value was acceptable since the loop-gain
has relatively little effect on the learning of the forward model
(an assertion confirmed by adjustingand comparing forward
model characteristics). The model weights at the end of the ten
practice runs were stored for use in the subsequent experimental
runs.

The simulated practice results could not be compared directly
with the experimental results until after the internal model had
approximately converged, which was shown to be by about run
five [7]. This is because human subjects are likely to begin the
practice runs using an approximate internal model based on
past experience, whereas the model was simply initialized with
random weights.

It was necessary to determine appropriate values for the
loop-gain and adaptation rate parameters prior to the full ex-
perimental run simulations. Once the practice run learning was
complete, the forward model itself was affected only minimally
by variation in loop-gain and adaptation rate (provided stability
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Fig. 6. Simulated RMS error in relation to experimental results (final run). Experimental results indicated with solid lines, simulated results indicated with crosses.
Bars indicate experimental standard deviation.

was maintained). This allowed a strategy to be devised whereby
appropriate parameters for the experimental runs could be
determineda priori. The previously learned zero-order forward
model was loaded into the simulation, with adaptation turned
off, and iterative alterations to the parameters were made so
that their effect on closed- and open-loop trajectories could be
judged efficiently. It was hoped that a single set of parameters
could be found that would perform acceptably acrossall
conditions in the experiment.

The same experimental procedure and model parameters
were used for the dynamic linear and static nonlinear external
systems. Simulation of the experimental runs began with the
dynamic linear external system. Fifteen runs were simulated
in accordance with the 15 experimental runs performed by
the human subjects. The model was initialized with several
different adaptation coefficients so that an appropriate learning
rate could be determined. 0.0015 produced a response with
an appropriate closed-loop learning time constant (compared
with experimental results from human subjects) and these
results are reported. The internal loop-gain settings found to
produce good results for a zero-order system was used for
these runs. Trial runs with various other feedback-loop gains
produced no clear improvements.

V. RESULTS

A. Experimental Data

A graphical summary of the experimental results is included
in all simulation result diagrams. The mean and standard devi-
ation of thefinal experimental runare shown on each diagram.

By using only the final run, instead of the mean across all runs,
learning effects do not interfere with the interpretation of re-
sults. Thus, the experimental results shown in the diagrams rep-
resent the optimum transfer function learned by the subjects.
The results from one subject in the static nonlinear group were
removed from the analysis due to the open-loop gain of this sub-
ject being twice that of any other subject.

1) Learning Trends:Clear learning trends were evident in
the closed-loop results for all external systems but the corre-
sponding open-loop learning trends were relatively weak (see
Fig. 6). No learning was detected for the dynamic linear ex-
ternal system in open-loop. Learning trends were, however, de-
tected in the open-loop results for both the static nonlinear ex-
ternal system and the practice runs [7]. The discrepancy be-
tween closed- and open-loop learning trends may be due to a
very large learning rate differential between the feedforward
and feedback adaptive controllers, suggesting that very little
open-loop learning occurred over the 15 experimental runs. Al-
ternatively there may be another effect obscuring underlying
improvement in feedforward performance. Simulation of the
learning process aimed to resolve this issue.

2) Transfer Functions:The human tracking experiment pro-
duced response trajectories exhibiting unusual open-loop char-
acteristics. There was little evidence of a direct relationship be-
tween closed- and open-loop trajectories as predicted by other
motor models.

The open-loop responses for all external systems showed a
mean high-pass gain with a cutoff frequency of approximately
0.3 Hz. The mean gains from 0–0.3 Hz were remarkably similar
across all three external systems in the experiment. There was
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a tendency for phase lead when controlling the two static
systems (zero-order and nonlinear). The dynamic linear system
exhibited a very large intersubject variability in open-loop
phase response, and while the mean exhibits a phase lag, many
individuals actually lead the target. Open-loop results for all
systems also exhibited a characteristic drop in coherence at
low-frequency. Intersubject variance was markedly greater in
open-loop tracking compared with closed-loop tracking. The
open-loop results do not indicate that the human subjects were
attempting to reach a transfer function of unity, representing
accurate tracking (as observed for closed-loop tracking). In
fact, a quite different relationship between target and response
appears to have emerged. This relationship needs to be ex-
plained and reproduced in simulation.

In contrast with the open-loop results, the closed-loop gain
was close to unity across the target bandwidth, as expected for
the human operator after extensive training. No attenuation of
low frequencies, as observed for the open-loop data, was evi-
dent. The gain for the dynamic linear system was higher than
the other systems (possibly in compensation for the phase lag
introduced by this external system). The mean phase responses
were close to zero, except for the dynamic linear system which
exhibited uncompensated phase lag. The mean closed-loop co-
herence was very close to unity for all three systems, indicating
relatively little noise or nonlinearity in the response. In general,
closed-loop performance at lower frequencies was superior to
that at higher frequencies. The closed-loop results indicate that,
to varying degrees for all three systems, the human subjects
were attempting to reach a transfer function of unity (which rep-
resents perfect tracking).

B. Simulations Results

1) Parameters:The internal feedback loop parameters were
tuned manually to provide a suitable fit. It was noted that a
high-frequency gain drop-off was evident even for very high
loop-gains ( 100). This indicates that the forward model,
as formed during simulation of the practice runs, was not com-
pletely accurate. A similar, though much weaker, reduction in
high-frequency gain was evident in the experimental results.
This effect, however, remains a point of difference between the
simulated and experimental results at high frequencies. The pa-
rameters found to best match the practice run data were
0.5, 1, and 0.05. Noise, with variances between 0
and 50, was systematically added to the simulation using these
parameters. Noise variance 5 generated similar results to
the experimental data for the zero-order system. This noise level
was used in all following simulations. With the exception of the
high-frequency behavior, as explained previously, these param-
eters produce results similar to the observed experimental re-
sults.

2) Dynamic Linear External System:The root-mean-square
(RMS) error results for the dynamic linear system are shown in
Fig. 6. Removing response feedback caused the RMS error to in-
crease and resulted in a perturbed response trajectory which was
consistent with the experimental results. Also, in common with
the experimental results, the open-loop RMS error did not im-
prove in proportion with the closed-loop RMS error, remaining
at a much higher level (around 35 mm).

Fig. 7. Simulated gain, phase and coherence in relation to experimental results
(final run). Experimental results indicated with solid lines, simulated results
indicated with crosses. Bars indicate experimental standard deviation.

The transfer function and coherence plots for the final run
(number 15) are shown in Fig. 7. The closed-loop results show
a phase lag and a gain above 0.9 at all frequencies. The coher-
ence is also very high in closed-loop. These closed-loop results
show better performance than the open-loop results due to the
action of the feedback controller. The most notable difference
between the experimental and simulated transfer functions is the
absence in the simulated results of a peak at 0.3 Hz. The cause
of this peak in the experimental results is unknown, although it
should be noted that the peak was not present in the results of
all subjects.

The open-loop results show the same characteristic drop in
gain and coherence below 0.3 Hz that was observed in the exper-
imental results. The open-loop results also show a gain which,
while lower than the mean [approximately one standard devi-
ation (sd) below average], was consistent with the results for
several individual subjects. Similarly, the phase response shows
a lead with respect to the mean but is consistent with several in-
dividuals.

By the final run the simulated open-loop trajectory exhibits
characteristics which are visually similar to the mean response
trajectories of the experimental subjects (see Fig. 8). The sim-
ulated trajectory remains within 1 sd of the mean experimental
response, so the trajectory shown here could quite conceivably
represent a typical human response.

3) Static Nonlinear External System:The closed-loop
RMS error results in Fig. 6 show a similar learning trend to
the experimental results. The simulated RMS error remains
approximately 1 sd higher than the mean experimental results.
Notably, the open-loop RMS error results show less learning
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Fig. 8. Simulated open-loop response in relation to the target after 15 runs.

than observed experimentally but the increased RMS error
and disproportionate learning rate relative to the closed-loop
results are reproduced. It was possible to reproduce the weak
open-loop learning trend by adjusting the internal feedback
loop gain slightly, at the expense of reducing the closed-loop
learning rate. Given that no change has been made in the
internal loop-gain between this simulation run and the dynamic
linear system, the results are acceptably consistent with the
mean experimental results.

The transfer function and coherence plots for the final run
(number 15) are shown in Fig. 7. In closed-loop, the simulated
gain below 0.5 Hz was higher than the mean experimental result.
The phase response was close to the experimental mean, and
the simulated coherence exhibited a characteristic drop above
0.4 Hz as seen experimentally. In open-loop, the gain was again
around 1 sd below the mean. Importantly, the open-loop results
show the same drop in gain and coherence below 0.3 Hz as was
characteristic of the mean experimental results.

Fig. 8 shows the simulated open-loop response trajectory
for run 15. The response shows similar characteristics to the
unusual response trajectories observed in the experiment. The
simulated trajectory again remains primarily within 1 sd of
the mean experimental response and the trajectory shown here
could easily represent a typical human response, though with a
relatively low open-loop gain.

VI. DISCUSSION

Our novel nonlinear implementation of AMT succeeded in
generating responses reproducing many of the principal char-
acteristics of the response trajectories obtained during the ex-

perimental study. Importantly, the simulated closed-loop results
showed clear evidence of convergence to the target signal by the
end of task while the open-loop results did not. This is because,
unlike other models, our model continues to employ feedback
to control slow movements after adaptation. The inverse model
remains inaccurate, particularly at low frequencies, to maximize
stability. This is in agreement with the experimental results and
contrasts with other AMT implementations and FEL in which
the open-loop trajectory converges to the target signal. These re-
sults were obtained using a single set of parameters across the
range of conditions studied in the experiment (i.e., both closed-
and open-loop control and several different external systems).

It proved possible to generate a high-pass gain with a phase
lead in the absence of response feedback while retaining ac-
ceptably accurate performance in closed-loop (see Fig. 7). This
was possible because the inversion method employed an in-
ternal feedback loop, which argues in favor of the existence
of similar circuitry in the CNS. The internal loop-gain found
to optimally reproduce the experimental results was low (
0.5, 1, 0.05). It is notable that both FEL and other
AMT implementations are incapable of reproducing this dis-
parity between closed- and open-loop results without modifi-
cation to their structures. As discussed previously, it is usually
suggested that the inverse model becomes increasingly accurate
during learning until final convergence is achieved. In a com-
bined adaptive control structure, the open-loop response trajec-
tory would, consequently, become increasingly similar to the
target. In these models there is no obvious mechanism which
could cause the high-pass transfer functions observed in the ex-
perimental results. Additional simulations were performed with
the linear AMT implementation and FEL using a linear system
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that both models were able to control. Both models were found
to behave as expected: the inverse model becoming increas-
ingly accurate,particularly at low frequencies. Indeed, to pre-
vent an accurate inverse model forming at low frequencies a
filter needs to be added to deliberately disrupt the model. While
such low-frequency disruption can be compensated for by the
closed-loop controller and, hence, does not affect normal per-
formance, it is difficult to suggest why the brain would disrupt
the inverse model in this manner.

Our model provides a possible functional explanation for
the observed low-frequency behavior. The internal feedback
loop-gain essentially filters the inverse model to enhance the
stability of the loop. This action prevents the inverse from
becoming accurate at all frequencies. Even when the forward
model is entirely accurate it may be necessary to keep the
loop-gain low to maintain inverse loop stability. Hence, unlike
other combined motor models, our structure could potentially
finish learning with a completely accurate forward model but,
due to a low loop-gain, retain an inaccurate inverse indefinitely.
The simulations reported here employed a low proportional
and differential gain, so the inverse accuracy was degraded
particularly at low frequencies. This produced acceptable
open-loop trajectories without a serious loss of closed-loop
performance because the feedback control loop compensated
for low-frequency errors.

Thus, the experimentally observed behavior arose from the
structure of our model with no major additions or alterations.
This is supportive of the claim that an internal feedback loop is
used for the inversion of external systems in the human brain
[28]. Paradoxically, existing AMT implementations [4], [13],
feedback-error learning [3], [29] and, to our knowledge, all
other control-systems-type motor control models are incapable
of reproducing these results due to the accuracy of the inversion
techniques they employ.

It has been suggested that a learning-rate differential
might exist between forward and inverse models [9]. Even if
open-loop adaptation was much slower than closed-loop it is
unlikely that the large low-frequency errors we observed would
persist throughout all 25 runs in the experiment.

It is possible that the inverse model is trained and improved
off-line during periods of rest and/or sleep [29] so that little
open-loop learning would be evident in our experiment.
While we cannot eliminate this possibility, a pilot study with
a well trained individual given several days rest produced
similar results, arguing against this explanation. The effects of
longer-term adaptation using the open-loop paradigm are to be
investigated in further research.

The surprisingly low gain of the controller that optimally
matches the experimental results ( 0.5, 1, and
0.05) is interesting. Keeping the loop-gain as low as possible
would be a useful strategy since the inversion loop is more likely
to be stable for low loop-gains. Since closed-loop performance
is good, this suggests that the adaptive feedback controller is
capable of compensating for inaccuracy in the inverse for fre-
quencies within the target bandwidth (0.6 Hz).

The simulated and experimental RMS error curves are re-
markably similar for the dynamic linear system, but less so for
the static nonlinear system (Fig. 6). It should be noted that the

experimental curves represent the mean response over many
subjects, while the simulation is intended to represent a single
subject. While it is possible, by adjusting the internal loop gain,
to achieve either closed- or open-loop results which match the
experimental mean, doing so tends to degrade the match in the
other feedback-mode. Hence, the mean response is never actu-
ally achieved by the simulation. Despite this, we feel the simu-
lated results for the static nonlinear system capture the key char-
acteristics of the experimental results.

The RMS error learning curves (Fig. 6) indicate that adaptive
feedback control dominates adaptive feedforward control at the
frequencies studied here. This suggests that the 0.6-Hz target
bandwidth used in the experiment is lower than ideal for ob-
servation of strong feedforward adaptation (since feedback con-
trol is capable of achieving adequate results). Since feedforward
adaptation is not critical at these frequencies, it is, perhaps, not
surprising that a low and, therefore, stable loop-gain was used
for inversion. Other models, however, predict that rapid feed-
back control adaptation should be accompanied by rapid feed-
forward adaptation. In our model, the necessity for inverse sta-
bility imposes an additional constraint and may, therefore, ex-
plain the relative lack of learning observed in open-loop.

The high-frequency performance of the simulations in both
closed- and open-loop differed from the experimental results
due to residual inaccuracies in the forward model at the end of
the ten practice runs. This effect may have been caused by use
of autocorrelated inputs to the on-line gradient descent type
adaptive algorithm used in the model. Strong autocorrelation
was shown, in a pilot study, to distort the resulting model.
Prewhitening algorithms were unable to improve the perfor-
mance of the algorithm. Finding a neurobiologically plausible
solution to this problem is suggested as an area for future
research.
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