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Abstract. The goals of this research are: (1) to apply
knowledge of human neuro-musculo-skeletal motion
control to a biomechanically designed, neural controlled,
‘anthroform’ robotic arm system, (2) to demonstrate that
such a system is capable of responses that match those of
the human arm reasonably well in comparable experi-
ments, and (3) to utilize the anthroform arm system to
study some controversial issues and to predict new
phenomena of the human motion control system. A
physiologically analogous artificial neural network con-
troller and an anatomically accurate robotic testing
elbow are applied in this study. In order to build the
physical elbow system to have mechanical properties as
close as possible to the human arm, McKibben pneu-
matic artificial muscles, force sensors, and mechanical
muscle spindles are integrated in the system with ana-
tomically accurate muscle attachment points. A physio-
logically analogous, artificial neural network controller is
used to emulate the behavior of spinal segmental reflex
circuitry including Ia and Ib afferent feedbacks. System-
atic experiments of elbow posture maintenance are per-
formed and compared with physiological experimental
data. New experiments are performed in which responses
to torque perturbation are measured when selected affer-
ent pathways are blocked. A ‘covariance diagram’ is
introduced. And a linear model is used to help to analyze
the roles of system components. The results show that
muscle co-contraction and Ia afference with gamma dy-
namic motoneuron excitation are two efficient ways to
increase joint stiffness and damping, which in turn reduc-
es the mechanical sensitivity of the joint to external
perturbation and shortens the settling time of the system.

1 Introduction

While modern control research is still developing a num-
ber of theories to solve motion control problems, the

human musculo-skeletal motion system has been proven
to succeed by nature for thousands of years. Scientists
have long attempted to understand the human motion
control method. However, the complexity of the system
and the lack of technology made this very difficult. With
the development of advanced electronic instruments and
medical techniques, ever more insight into the human
nervous system has been gained, and increasing numbers
researchers have entered this area.

The approach to human motion control research can
be either top-down or bottom-up. While the top-down
approach starts from the conceptual layer (task) and
proceeds through the functional layer (block) to the phys-
ical (device) layer, the bottom-up approach reverses this
ordering. The foci can be roughly partitioned into high-
level control and low-level control. High-level control
focuses on brain functionalities, such as motion planing,
coordination, and learning (Raibert 1978; Loeb 1987;
Gomi and Kawato 1993). Low-level control focuses on
spinal cord functionalists, such as the short latency reflex
and the integration of voluntary command into spinal
neural circuitries. Since this research area is still develop-
ing, neither the top-down nor the bottom-up approach
has achieved full understanding of the system. As a result,
it is very reasonable that high-level control research
chooses a top-down approach and low-level control re-
search chooses a bottom-up approach.

The goals of this research are: (1) to apply knowledge
of human neuro-musculo-skeletal motion control to a
biomechanically designed, neural controlled, ‘anthro-
form’ robotic arm system, (2) to demonstrate that such
a system is capable of responses that match those of the
human arm reasonably well in comparable experiments,
and (3) to utilize the anthroform arm system to study
some controversial issues and to predict new phenomena
of the human motion control system.

We start by focusing on low-level control and using
a bottom-up approach. Existing low-level neural control
research can be partitioned into two stages: the controller
and the plant. The controller can be further classified
into three types: (1) a conventional feedback controller
with minimal or very abstract neural control concepts

.



(Ramos et al. 1990), (2) an artificial neural network con-
troller with functional reproduction of human neural cir-
cuitry (Bullock et al. 1992; Hannaford et al. 1995), and (3)
a combination of the above (Lan and Crago 1994). Sim-
ilarly, the plant can be classified into three types: (1)
mathematical dynamics models (Ramos et al. 1990; Bul-
lock et al. 1992; Lan and Crago 1994), (2) conventional
robotic arms (Inoue 1988), and (3) anthroform robotic
arms (Hannaford et al. 1995). Here we define the term
‘anthroform’ to describe a robotic arm in which all aspects
of its design are specified in terms of emulation of the
corresponding functions of the human arm. Many of these
approaches have established new research directions.

1.1 Actuators

One of the most fundamental elements in our project is
the actuator which will substitute for skeletal muscles in
the system. We cannot expect a technologically realized
actuator to simulate accurately all the static and dynamic
behaviors of muscle. However, we would like the ideal
actuator technology for this application to meet the fol-
lowing requirements (no particular order):

— Strength to weight ratio (Nkg~1) and tension intensity
(Ncm~2) equal to or exceeding those of skeletal
muscle.

— Contraction ratio (D¸/¸) and speed of contraction
[(D¸/¸

0
)t~1] comparable to those of skeletal muscle.

— Variation of force with length comparable to that
described in muscle (Gordon et al. 1966).

— Damping behavior comparable to skeletal muscle — for
example, a nonlinear damping following Hill’s (1938)
model — would be an excellent approximation. Al-
though there are many known subtleties to the dynam-
ics of muscle contraction, accurate reproduction of
Hill’s force-velocity relation would represent a huge
advance towards more biological actuation character-
istics.

— Flexibility to curve around bones and ligaments and to
rub against neighboring actuators (for example in the
deltoid muscle) so that it can be integrated within the
skeleton.

— Ability to be easily manufactured in a range of physio-
logically relevant lengths at low cost.

— Compatibility with widely available power sources
and environmental conditions.

— Reliability to perform many cycles without failure.
This will be especially valuable for future experiments
in motor learning control.

No actuator available today meets all these criteria.
In earlier studies, we tested McKibben pneumatic artifi-
cial muscle actuators in a static and dynamic testing
machine, and reviewed their properties in comparison
with human muscle (Chou and Hannaford 1994, 1996;
Chou 1996). This testing, along with kinematic, dynamic,
and thermodynamic analysis, showed that McKibben
actuators satisfy or exceed six of the eight criteria. For
example, the tension intensity of the actuators we are
using (116 Ncm~2) and the strength to weight ratio

('3900 N kg~1) far exceed those of skeletal muscle.
However, our testing revealed that McKibben actuators
lack the desired damping characteristics of muscle and
specifically lack nonlinear Hill-type damping. Although
this unrealistic feature of the actuators will affect the
results, their excellent performance on the other six cri-
teria led us to select them for the arm implementation
(Hannaford and Winters 1990; Hannaford et al. 1995).
Work now under way in our laboratory is aimed at an
improved McKibben actuator with intrinsic Hill-type
damping.

1.2 Testing elbow

Implementation of reflex-like control on the arm requires
sensory inputs for kinesthetic information. Testing re-
quires precise, nonphysiological measurements of limb
position, as well as the ability to apply controlled torques
or displacements to the joints. Providing this array of
sensors and actuators to all the muscles and joints is very
difficult, so that our initial efforts, reported in this study,
are performed on a reduced-scale version of the arm
having only the elbow flexion-extension degree of free-
dom with an attached optical encoder position sensor
and a torque motor.

The physical elbow system has several mechanical
properties which are very close to those of the human
arm: (1) McKibben pneumatic actuators (Schutte 1961;
Chou and Hannaford 1996) were used as elbow flexor
and extensor. (2) Force sensors which act as Golgi tendon
organ (GTO), and mechanical muscle spindles which
mimic the behavior of biological muscle spindles
(Marbot and Hannaford 1993; Marbot 1995), are integ-
rated in the system. (3) The shape of the limb segment and
the attachment points of the muscles were chosen based
on human anatomical geometry (Snell 1980; Zuckerman
and Matsen 1989) to mimic the real human forearm
mechanical properties around the elbow joint. Finally,
the physiologically analogous artificial neural network
controller (Hannaford et al. 1995) is implemented to
emulate the behavior of spinal segmental reflex circuitry
(Binder 1989a, b).

However, there are two major limitations of our
system: (1) Since the large number of motor units in a
biological muscle are emulated in our system by only one
artificial muscle and motoneuron, phenomena related to
motor unit recruitment can not be studied. (2) Since only
one sensor of each type is used for each muscle, spatial
summation of multiple afferent signals will not take
effect.

There are three key reasons for using a physical arm
instead of a mathematical model: (1) A physical system
will obey all physical laws which otherwise may be ne-
glected or may not even be considered when modeling.
(2) While we can build a physical arm with mechanics as
close as possible to human arm, the complexity of
a mathematical model which implements similar details
of mechanics will make it very difficult to simulate.
(3) The implementation of the physical anthroform arm
itself may help develop new technologies for novel ac-
tuators, sensors, and prosthetic arms.
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Fig. 1. Elbow test bed setup, including Neural Controller,
Testing Elbow, and dynamic testing system

The reduced dimensionality of the testing elbow sys-
tem makes it relatively more amenable to computer
simulation. However, the intention of the testing elbow
construction is to validate models, technologies, and con-
trol parameters for eventual incorporation into the full,
multi-degree of freedom arm. To transfer knowledge to
our more complex spatial arm, we cannot rely on com-
puter simulation of the elbow system.

In the following, we begin by describing the general
experimental setup. Then, four groups of experiments
will be described, which include (1) open loop stiffness
control with muscle co-contraction, (2) simple closed
loop stiffness control with Ia afferent or Ib afferent feed-
back, (3) posture maintenance with spinal reflex circuitry
in response to transient perturbation, and (4) experiments
in which spinal reflex circuit elements are artificially
modified.

The four experiments are aimed at testing the hypoth-
esis that a technological arm can be built which has
dynamic response comparable to the human arm as
measured in comparable experiments. Given such a re-
sponse, we would also like to modify the system experi-
mentally and observe the effects of these alterations on
performance.

Although the literature on reflex performance
around the human elbow joint is far from complete,
the third experiment will compare performance of the
elbow system with a physiological experiment per-
formed by Lacquaniti et al. (1982). A ‘covariance
diagram’ will be introduced to visualize the large
amount of experimental data and to highlight the phe-
nomena of interest. Finally, the system behavior will
be analyzed with reference to a linearized model, where
by utilizing the flexibility and repeatability of the
system, the specific roles of neural circuit elements will
be identified and some nervous system abnormalities will
be predicted.

2 Elbow test bed setup

The elbow test bed includes the elbow system, which is
subdivided into the Neural Controller and the Testing
Elbow, and a dynamic testing system (Fig. 1). The Neural
Controller is implemented by a real-time artificial neural
network program in a digital signal processor (DSP)
based computer (Hannaford et al. 1995). The Testing
Elbow consists of an equivalent limb segment and two
McKibben muscles (pneumatic actuators) (Chou and
Hannaford 1994, 1996) each attached in parallel with
a mechanical muscle spindle (Marbot and Hannaford
1993; Marbot 1995) and force sensor. The two McKibben
muscles act as elbow flexor and extensor. Electrical con-
trol signals are sent from the DSP controller, and sensory
signals are fed back to the controller. The dynamic test-
ing system consists of a personal computer (PC), a torque
motor, an angular position optical encoder, and various
sensors (some of which are overlapped with the elbow
system). The PC performs mechanical data acquisition
and feedback control of the torque motor if desired.

While the PC performs mechanical data acquisition,
the DSP itself performs neural activities data acquisition.
The efferent signals sent to the McKibben muscles are
assumed to have the same timing and relative amplitude
characteristics as a spatial summed and rectified elec-
tromyogram (EMG). The activities of the neural network
elements and forearm mechanical variables were re-
corded during experiments and will be shown and ana-
lyzed in the following sections.

3 Experiments

3.1 Open loop stiffness control with muscle co-contraction

In this experiment, the actuator pressure (analogous to
muscle activation level) was kept as constant as possible
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Fig. 2. Open loop torque-angle-
activation relationships for elbow
flexor and extensor. Joint equilib-
rium angle is the intersection of
two curves, one for each actuator
of corresponding activation level.
Normalized muscle activation
level is indicated on top of each
curve with 1 corresponding to 100
psi (6.9 bar). Joint stiffness, which
is the sum of stiffness of two
muscles, increases when muscles
co-contract

while cyclic displacement or torque patterns (0.25 Hz)
were applied to the joint. The Neural Controller was not
involved at this point. The relationships between elbow
joint torque, displacement, and actuator pressure of the
flexor and the extensor are superimposed in Fig. 2. The
hysteresis loop of each curve is caused by the actuator
friction and the gas viscosity. The loop direction is clock-
wise for flexor and counterclockwise for extensor. The
joint equilibrium angle will be the intersection of two
curves, one for each actuator of corresponding activation
level. The stiffness (absolute value of the slope) of each
actuator curve increases when the pressure increases. As
a result, the joint stiffness, which is the sum of the stiffness
of the two muscles, increases when muscles co-contract.

To verify the above point, constant-amplitude dis-
turbing torque steps were applied to the elbow with
various levels of co-contraction. The angular position
was recorded and histograms of the position responses
are shown in Fig. 3. The higher the co-contraction level,
the narrower the histogram of position. This indicates
that the stiffness increases with co-contraction.

3.2 Closed loop stiffness control with Ia or Ib
afferent feedback

In this experiment, muscle spindle Ia afferent feedback
and GTO Ib afferent feedback effects will be demon-
strated.

The muscle spindle Ia afferent is sensitive to the
length and velocity of human muscle (Binder 1989a). This

kind of feedback pathway to muscle activation will
increase the stiffness of the mechanical system. The
mechanical muscle spindle has been reported to be
able to emulate the sensitivity and some nonlinear
properties of the spindle under isolated testing
(Marbot and Hannaford 1993; Marbot 1995). In this
experiment, it will be tested with the flexor actuator of
the arm to demonstrate the effect of joint stiffness modi-
fication.

In the first part of this section, the Neural Controller
consists of an a motoneuron (aMN), a c motoneuron
(cMN), and a Ia afferent sensory neuron. Each simulated
‘neuron’ actually represents a pool of physiological
neurons. Values for the synaptic weight between Ia and
aMN and a constant command signal to the aMN were
chosen to achieve the desired operating points to keep
the elbow motion in the dynamic region. The joint angle
was recorded while a cyclic disturbing torque was ap-
plied to the elbow joint (Fig. 4). Each curve corresponds
to a different synaptic weight of the Ia-aMN synapse. The
relationships between joint stiffness and synaptic weight
are plotted in the inset of Fig. 4. The joint stiffness
increases significantly from 1.4 to 6.6 Nm/rad when the
synaptic weight increases.

On the other hand, the GTO senses the tension of its
connected muscle fibers (Binder 1989a). The action of this
kind of inhibitory feedback pathway will increase the
compliance (reciprocal of stiffness) of the system. A strain
gauge force sensor was applied to the ‘tendon’ of each
actuator to perform this function.
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Fig. 3. Elbow joint angle histograms in response to
constant-amplitude disturbing torque steps with
different muscle co-contraction levels (CC). Narro-
wer width of the histogram indicates joint stiffness
is higher

Fig. 4. Ia afferent effect. Joint angle was re-
corded while cyclic disturbing torque was ap-
plied to the elbow joint. Each curve corresponds
to a different weight of the Ia-aMN synapse.
Approximate stiffness versus synaptic weight is
plotted in the inset. Joint stiffness increases
significantly when synaptic weight increases

In the second part of this section, the neural net-
work consists of an aMN, a Ib afferent sensory neuron,
and a Ib inhibitory interneuron (IbIn). Values for the
synaptic weight between IbIn and aMN and a constant
command signal to aMN were again chosen to achieve
the desired operating points. The joint torque was
recorded while a cyclic disturbing angle was applied

to the elbow joint (Fig. 5). Each curve corresponds to
a different synaptic weight of the IbIn-aMN synapse.
The relationships between joint stiffness and synaptic
weight are plotted in the inset of Fig. 5. The joint
compliance increases significantly from 0.2 to 2
rad/Nm when the Ib inhibitory synaptic weight
increases.
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Fig. 5. Ib afferent effect. Joint torque was re-
corded while a cyclic disturbing angle was applied
to the elbow joint. Each curve corresponds to
a different weight of the IbIn-aMN synapse. Ap-
proximate stiffness versus synaptic weight is plot-
ted in the inset. Joint stiffness decreases
significantly when synaptic weight increases

Fig. 6. Neural reflex circuitry of the spinal segment.
Circuitry consists of a and c motoneurons (MN), Ia and
Ib afferents, Ia inhibitory (IaIn) and Ib inhibitory (IbIn)
interneurons, and Renshaw cells (Rn), with descending
pathways connected to all MNs and interneurons. Ter-
minals with line segments or open circles represent ex-
citatory and inhibitory synapses respectively.
A combination of the above symbols (descending in-
puts) indicates pathways which may include more than
one type of presynaptic neuron

3.3 Posture maintenance with spinal reflex circuitry
in response to transient perturbation

A more complex neural network, based on human spinal
segmental circuitry (Binder 1989a, b), is used in this ex-
periment. The spinal segmental circuitry is believed to
play the major role in the low-latency reflex response
which, for example, is involved in posture maintenance
against external perturbation (Fuchs 1989). The network
in the DSP controller for this experiment consists of
aMNs and cMNs, Ia and Ib afferents, Ia inhibitory (IaIn)
and Ib inhibitory (IbIn) interneurons, and Renshaw cells
(Rn), with descending pathways connected to all MNs

and interneurons (Fig. 6). The software architecture
allows each type of neuron to have an individually de-
fined function to control its behavior, and each indi-
vidual neuron can have its own set of parameters to
fine-tune its response based on physiological evidence if
available.

The testing conditions are designed to resemble those
described in Lacquaniti et al. (1982), which demonstrated
how different instructions to human subjects shape the
reaction to the same external mechanical load and per-
turbation. In their experiment, the subject’s upper arm
was fixed, and the forearm was fitted with damped
springs to create viscoelastic loads with three different
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Fig. 7. Experimental results of Lacquaniti et al. (1982). ¸eft-hand col-
umn corresponds to the task ‘do not resist’, middle column to ‘resist’, and
right-hand column to ‘resist maximally.’ ¹op trace in each subplot
corresponds to forearm angular velocity (flexion is positive); middle and

bottom traces are rectified electomyogram (EMG) activities of triceps
and biceps, respectively. Perturbation responses were measured with
three external viscoelastic loads. From Lacquaniti et al. (1982), with
permission

values. Initially, the forearm and damped spring system
was pulled away from its equilibrium angle by a torque
motor. Then it was abruptly released and made damped
oscillations. The subjects were instructed to perform
three motor tasks: (1) ‘not to resist the perturbations by
remaining as relaxed as possible’ (referred to as ‘do not
resist’), (2) ‘to apply a moderate amount of force without
attempting to control the perturbed position of their
forearm’ (referred to as ‘resist’), and (3) ‘to resist the
perturbations so as to arrest the forearm oscillations’
(referred to as ‘resist maximally’). The results of their
experiments showed that the estimated time constant
decreases, and the stiffness, damping factor and oscilla-
tion frequency increase, when the instructed resistance
level increases. In another words, the settling time is
shorter when the resistance level is higher (Fig. 7).

To emulate the different instructions to subjects the
following inputs were applied as ‘descending commands’
to our spinal level network. For the first motor task (‘do
not resist’), the descending commands of both aMNs and
cMNs were set to zero to emulate the ‘relaxed’ condition.
For the Second task (‘resist’), a moderate level of
co-contraction command was applied to aMNs and
cMNs to produce 0.6 N m co-contraction torque from
each, oppositely acting, muscle actuator. For the third
task, since there was only spinal segmental control
level in our system, intentional control to arrest the
forearm oscillations is not possible. To substitute this
case, a co-contraction level of 1.5 Nm was chosen
(referred to as ‘resist harder’) to obtain higher resistance
without intention.

The viscoelastic load was emulated by the closed loop
controlled torque motor with three different position and
velocity feedback gains to produce stiffness and damping
equivalent to the damped springs used in the experiments
of Lacquaniti et al. (1982). Note that the medium load
has the lowest value of viscosity among the three. Tests
without load were also performed for comparison.

As in Lacquaniti et al.’s experiment, the forearm and
damped spring system was initially pulled away from its
equilibrium angle and then abruptly released making
damped oscillations. The transient elbow joint velocity
and actuator valve input signals (EMG) are shown in
Fig. 8. Each column corresponds to a different motor
task: i, ‘do not resist’; ii, ‘resist’; and iii, ‘resist harder.’
Each row corresponds to a different viscoelastic load: 0,
no load; 1, weak spring; 2, medium spring; and 3, stiff
spring. The parameters of the oscillation (time constant,
stiffness, damping factor) were calculated from the first
four wavelengths of each oscillation. The time constant
decreased, and the stiffness, damping factor, and oscilla-
tion frequency increased, when the commanded resist-
ance level increased (Chou 1996). This matches the
results of Lacquaniti et al.’s (1982) experiment very well.
However, in the ‘resist harder’ task, the computed time
constant did not decrease as significantly as it did in the
‘resist maximally’ task of Lacquaniti et al.’s experiment.
This will be discussed in more detail later.

The test system allows all neural activities, afferent
and efferent signals, and dynamical variables to be re-
corded. Although complete sets of data were recorded in
this experiment, the amount of data is too large to report
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Fig. 8. Artificial elbow joint transient response
with spinal reflex circuitry. Each column corres-
ponds to a different task: i, ‘do not resist’; ii, ‘resist’;
and iii, ‘resist harder.’ Each row corresponds to
different viscoelastic load: 0, no load; 1, weak
spring; 2, medium spring; and 3, stiff sprig. ¹op
trace in each subplot corresponds to forearm angu-
lar velocity (flexion is positive); middle and bottom
traces are analogous to spatial summation of recti-
fied EMG activities of extensor and flexor muscle
groups, respectively

in this article. Instead, the covariance coefficients of each
pair of variables are plotted as circles in a matrix (Fig. 9).
The size of the circle represents the amplitude of
covariance between the row and column variables, and
black indicates positive. We will call this a covariance
diagram. The covariance diagram greatly reduces the
amount of data and highlights the points of interests.

By properly arranging the order of the variables, the
covariance diagram forms several clusters with large
circles and others with small circles. The clusters of larger
circles indicate that the variables in the cluster are
strongly related to each other (e.g., Ia, IaIn, Rn, and aMN
to each other). The clusters of small circles indicate that
the variables in the cluster are weakly related to each
other (e.g., Ib and IbIn are weakly related to Ia, IaIn, Rn,
and aMN). Also, we can find that the positively co-
varying pairs are mostly located near the diagonal, while

the negative ones are located near the anti-diagonal. This
demonstrates the agonist-antagonist nature of the system
(e.g., the flexor aMN cluster and the extensor aMN
cluster). On the diagonal itself are trivial covariances of
#1. Figure 9 plots the covariances for the ‘medium’
spring and the ‘resist’ instruction. The covariance dia-
grams for the other conditions looked quite similar
(Chou 1996).

3.4 Comparative experiments with modified spinal reflex
circuit elements

In order to highlight the roles of specific subnetworks of
the neural circuitry, another set of experiments were
performed similar to the above but with modified neural
circuitry. The following configurations, modified from
the original circuitry (Fig. 6), were chosen: (1) without
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Fig. 9. Covariance diagram of experiment with spinal reflex circuitry.
Covariance coefficients of each pair of variables, including neural activ-
ities and elbow joint mechanical quantities, are plotted as circles. The
size of a circle represents amplitude of covariance between row and
column variables, and color represents sign (black is positive, white is
negative). Activity covariances are plotted for the case of the ‘medium’
spring with the ‘resist’ instruction

Fig. 10. Elbow joint transient response with modified circuitry. Each
column corresponds to different motor tasks: ii, ‘resist’; and iii, ‘resist
harder.’ Each row corresponds to a different, modified, network config-
uration: 3a, without cMN dynamic excitation; 3b, without Ia afferent
feedback; 3c, without Ib; and 3d, without Ia or Ib. Only the trials with
the stiff spring are performed. The top trace in each subplot corresponds
to forearm angular velocity (flexion is positive); the middle and bottom
traces are equivalent to average rectified EMG activities of extensor
and flexor muscle groups, respectively

c dynamic excitation of muscle spindles, (2) without Ia
feedback, (3) without Ib feedback, (4) without Ia or Ib
feedback, and (5) without aMN activation dynamics.

The transient responses are shown in Fig. 10. Each
column corresponds to a different motor task: ii, ‘resist’
and iii, ‘resist harder.’ Each row corresponds to a differ-
ent network configuration: 3a, without cMN dynamic
excitation; 3b, without Ia afferent feedback; 3c, without
Ib; and 3d, without Ia or Ib. Only the trials with the stiff
spring are performed. The result of the tests without
aMN activation dynamics was very similar to that of the
tests without c dynamic excitation and is not shown. In
general, the results show that the system stiffness de-
creases without Ia feedback, and increases without Ib
feedback. Also, the damping factor decreases without
either c dynamic excitation or aMN dynamics. None of
these modified configurations can obtain the same distur-
bance rejection performance (short time constant) as the
original network.

The covariance diagram introduced in the previous
section is applied here also and is shown in Fig. 11 for
each experimental modification to the system. The col-
umn and row numbering is as defined in Fig. 10. To
calculate the covariance, afferent signals were always
recorded even if feedback was turned off. For conveni-
ence, neurons are classified into three subsystems: a sub-
system; including aMN and Renshaw cell; Ia subsystem,
including Ia afferent and IaIn; Ib subsystem, including
Ib afferent and IbIn. Compared with the previous

experiment, only the configuration without Ib feedback
has similar covariance diagram patterns. The one with-
out c dynamic excitation has strong covariance between
Ia, Ib, and a subsystems. The case without Ia feedback
has very low covariance between Ia and a subsystems but
very strong (negative) covariance between Ib and a
subsystems. Finally, the case without either Ia or Ib
subsystem has very low covariance between different
subsystems, and most off-diagonal circles shrink into
small dots.
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Fig. 11. Covariance diagrams of experiment with modi-
fied circuitry. Covariance coefficients of each pair of vari-
ables are plotted as in Fig. 9. Notation and column and row
numbering are as defined in Fig. 10
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Fig. 12. Signal block diagram of simplified elbow joint linear model,
which includes the controller, G, plant P, and feedback, H

Fig. 13. Schematics of elbow joint frequency response. The X/F
L

curve
(limb compliance) is upper bounded by and very close to the P or 1/GH
curve, whichever is smaller

4 Discussion

4.1 Tools

In the following, we will explain the effects of the system
components and the loads from a linear control point
of view. This linear model will help us clarify the relat-
ive roles of co-contraction and Ia reflex activity in
maintaining posture. Although the system is nonlinear,
a linear model can be used to qualitatively analyze
the effects of some system parameters and to conve-
niently show plausible roles for system components in
generating the observed experimental results. Of course
it should always be kept in mind that the accuracy of
the linear model will decrease significantly when
system states are moving away from the current operat-
ing point.

The signal block diagram of the system, including the
controller, G, the plant, P, and the feedback, H, are
shown in Fig. 12. The frequency response from the closed
loop joint angle to the perturbing torque will be:
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In terms of linear analysis, the frequency response of
the aMN and muscle activation dynamics can be approx-
imately expressed as:
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where F
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is muscle torque, E is aMN input, K
.
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stiffness, x

0
is joint angle at ideal minimum muscle

length, z is aMN activation dominant zero, and p is
muscle activation dominant pole. The joint angle, x, is
treated as a constant in this equation (as in the isometric
case) for simplicity. Note that the term ‘muscle’ implies
extrafusal muscle fiber if not specified elsewhere. The
effect of propagation delay is not covered in the linear
model. However, realistic delays (17 ms reflex from sen-
sors to actuators mechanical response time) were built
into the afferent and efferent links in the physical elbow
system.

The frequency response of the arm and load dynamics
(the plant) is
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where X is joint angle, F is total torque, K
.

is muscle
stiffness, B

.
is muscle viscosity, I
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is forearm inertia, K

Lis load stiffness, B
L

is load viscosity and I
L

is load inertia.
The normalized muscle activation level, a

.
, is treated as

a constant in this equation, again for simplicity. Note
that the muscle internal length-tension and tension-velo-
city relationships are treated as individual elastic and
damping elements in the plant.

The frequency response of the muscle spindle afferent
feedback is
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where E
s

is Ia afferent feedback output, w is synaptic
weight to aMN, r is a scaling factor, K

s
is spindle stiffness,

B
s
is spindle viscosity and a

s
is normalized spindle activa-

tion level. The effect of Ib afferent feedback can be ana-
lyzed in the same manner.

The relationships X/F
L
, P and 1/GH are shown sche-

matically in Fig. 13, assuming that the zero of aMN
activation dynamics matches the pole of muscle
activation dynamics. According to (1), the value of
X/F

L
will approximate P if P is much less than 1/GH

(i.e., GPH is much less than 1, typically in the high-
frequency range), and approximate 1/GH if P is much
greater than 1/GH (i.e., GPH is much greater than 1,
usually in the medium- and low-frequency range). In
addition, it will be less than either P or 1/GH if the phase
of GPH is away from 180°. In other words, the X/F

Lcurve is upper bounded by and very close to the P or the
1/GH curve, whichever is smaller. This will be utilized in
the following.
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4.2 Load effects

Viewed in the frequency domain, the arm and load dy-
namics described in (3) (Fig. 13, curve P ) forms three
segments with slopes of 0 dB/dec (decade), !20 dB/dec,
and !40 dB/dec, respectively. External stiffness and
damping were supplied in Lacquaniti et al.’s experiment
and are included in our model. Increasing external load
stiffness will reduce the magnitude of the 0 dB/dec seg-
ment and, as a result, decrease the system damping factor
and increase oscillation frequency. This can be verified by
comparing row 1 with row 3 in Fig. 8. Similar changes
appear in Lacquaniti et al.’s results (Fig. 7).

Increasing external load viscosity will reduce the
magnitude of the !20 dB/dec segment and increase the
system damping factor. This can be verified by compar-
ing Fig. 8, row 2 (with the smallest damper) with row
1 and row 3. Finally, increasing load inertia will reduce
the magnitude of the !40 dB/dec segment, and decrease
system damping factor and oscillation frequency (this
effect is not studied in the experiments).

4.3 Open loop co-contraction effects

When subject to open loop co-contraction, the intrinsic
stiffness and viscosity of muscle have mechanical effects
similar to those described above. However, in biological
muscle, the changes in viscosity and stiffness are depen-
dent and usually proportional to each other. Under this
constraint, without a significant change in inertia, the
damping factor will increase when the co-contraction
level increases. In addition, because the initial external
perturbations in the ‘posture maintenance’ experiment
were chosen to have the same amplitude of displacement
regardless of the system stiffness, the effect of stiffness on
steady-state position error can not be observed in the
results. However, in the ‘open loop stiffness control’ ex-
periment, it is obvious that by applying constant ampli-
tude torque perturbations, the steady-state position error
will be smaller when joint stiffness increases by muscle
co-contraction (Fig. 3). This is also true with afferent
feedback and is also consistent with the linear model. As
a result, co-contraction is an effective way not only to
reduce the steady-state error of joint angle but also to
reduce the settling time (proportional to the time con-
stant) of the system. The effect on settling time is shown
by comparing Fig. 8, 3.i with Fig. 10, row 3d. The time
constants decrease from 1.13 s to 0.64 s as co-contraction
level is increased.

4.4 Ia and Ib afferent effects

According to (2) and (4) the 1/GH curve in Fig. 13 forms
two segments with slopes of 0 dB/dec and !20 dB/dec
respectively. As mentioned in Sect. 4.1, the X/F

L
curve

will approximate the 1/GH curve in the low- and me-
dium-frequency range, and approximate the P curve in
the high-frequency range. Similar to the effect of open
loop co-contraction on the P curve and closed loop
response, increasing the spindle stiffness and viscosity (by
increasing the c excitation level) is an alternative way to

reduce the steady-state error of joint angle and the sys-
tem time constant. The effect of Ia afference with c excita-
tion on settling time is shown by comparing Fig. 8, row
3 with Fig. 10, row 3b. By applying the Ia afference with
a-c co-activation, the results yield time constants of 0.37
and 0.29 s (Fig. 8, 3.ii and 3.iii). By removing the Ia
afference, which is equivalent to deactivating cMN, with
only a co-contraction, the results yield time constants of
0.64 and 0.49 s (Fig. 10, 3b.ii and 3b.iii). This effect is also
shown by comparing row 3c with row 3d in Fig. 10,
where Ia afference yields time constants of 0.57 and 0.40
s (Fig. 10, 3c.ii and 3c.iii), and without Ia afference yields
time constants of 0.72 and 0.64 s (Fig. 10, 3d.ii and 3d.iii).

By combining open loop co-contraction and Ia affer-
ence with c excitation, the system performance greatly
increases in terms of steady-state error and settling time.
This is shown by comparing ‘do not resist’ cases in Fig. 8,
column i, with ‘resist’ and ‘resist harder’ cases in columns
ii and iii. The time constants significantly decrease
at each load when the a-c co-activation levels increase
(see Chou 1996, for numerical values and parameter
fitting procedure).

Two major differences between the Ia afferent effect
and open loop co-contraction effect are efficiency and
stability. The muscle activity produced by Ia afferent
feedback is only induced when there is a perturbation,
while co-contraction activity is always present. This
makes Ia afferent feedback more efficient than muscle
co-contraction since isometric co-contraction uses a lot
of metabolic energy without doing any work. On the
other hand, Ia afferent feedback is subject to phase lag
due to neural conduction delay. Although we do not
cover the effect of feedback time delay in the linearized
model, delay, as is present in both the biological and
anthroform arms, limits the maximum feedback gain
(and, in turn, the closed loop stiffness and viscosity)
possible at a given phase margin. Time delay has no effect
on the stability of the open loop system.

While Ia afferent feedback increases the closed loop
stiffness, Ib afferent feedback decreases it. The system
without Ib afference has higher stiffness, a lower damping
factor, and a longer time constant. This is shown by
comparing responses with Ib afference (Fig. 8, row 3 and
Fig. 10, row 3b) with responses without Ib afference
(Fig. 10, row 3c and row 3d).

Since the Ia and the Ib afferent systems have the
opposite effect, how these two afferent systems cooperate
remains to be determined. There are two reasonable
suggestions. (1) Ia afferent feedback is utilized during
position-priority tasks while Ib afferent feedback is utiliz-
ed during force-priority tasks. (2) since Ia afferent and Ib
afferent signals are not only processed by the spinal
segmental reflex circuitry but also propagate through
inter-segmental and higher CNS levels, they are very
likely to be processed by other neural circuitries in differ-
ent ways and have different effects.

4.5 Gamma static and dynamic excitation effects

The mechanical properties of intrafusal muscle fibers are
controlled by the cMN (Binder 1989a). While c static
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excitation mainly changes the stiffness of the fiber
[(4) K

4
a
4
], c dynamic excitation mainly changes the

viscosity (B
4
a
4
, where the two a

4
can be different).

This allows the system to modify position feedback
and velocity feedback independently through the Ia
afferent. The difference in the resulting system response
is shown by comparing Fig. 8, row 3 with Fig. 10,
row 3a.

4.6 Dynamic characteristics of aMN
and muscle activation

In previous discussion, the zero of aMN activation dy-
namics and the pole of the muscle activation dynamics
were assumed to match each other. Shoemaker (1993;
Shoemaker and Honnaford 1994) suggested an optimal
value of the zero of !26.0 rad/s (!4.13 Hz) for the
aMN activation dynamics. Although a cat’s aMN was
studied in her thesis, this value should be close enough
to a human aMN for our experiments. On the other
hand, the pole of muscle (actuator) activation dynamics
can be derived from the reciprocal of the time constant of
muscle (actuator) isometric activation. The time constant
of our artificial muscle actuators was measured to be
45 ms, yielding a pole at !22.2 rad/s pole. This is close
enough to achieve a good degree of pole-zero cancella-
tion in our system.

The perturbation response of the elbow system with-
out aMN activation dynamics was similar to the result
without c dynamic excitation (Fig. 10, row 3a). Since
there is no longer an aMN zero to cancel the effect of the
muscle pole (2) this pole in turn bends the medium- and
high-frequency portion of the GH curve to flat (originally
20 dB/dec). In other words, the aMN activation dynam-
ics has a feedforward effect to overcome the high-fre-
quency attenuation and phase lag (lowpass filtering) of
muscle activation dynamics. This helps to maintain stab-
ility with higher closed loop gains.

4.7 Additional factors

The results of our experiment (Fig. 8) are very consistent
with the results of the experiment by Lacquaniti et al.
(Fig. 7) except for the third motor task. Because of the
lack of high-level response in our system, the two experi-
ments are not directly comparable. We compensated for
this lack of high-level response with increased co-con-
traction, and labeled the condition ‘resist harder’ in our
setup compare with ‘resist maximally’ in their setup. The
settling time does not decrease as significantly as it does
in the ‘resist maximally’ task of Lacquaniti et al.’s experi-
ment because of insufficient change of damping. In a re-
cent study, the McKibben pneumatic muscle was found
to have less damping than biological muscle (Chou and
Hannford 1994, 1996). This is a major performance lim-
itation to our physical elbow system. In addition, it is
also very likely that the higher-level CNS has a time-
varying strategy to utilize aMN co-activation and cMN
static and dynamic excitation. Both these areas are the
objects of current efforts in further developing the arm
system.

4.8 Covariance diagrams

It is not difficult to find a strong relationship between the
network configuration (Fig. 6) and the covariance dia-
grams (Figs. 9, 11). An excitatory synapse with large
synaptic weight will dominate the covariance of its pre-
and postsynaptic neurons. This is shown by the strong
covariance between the Ia afferent and the aMN (Fig. 9),
which have an excitatory synapse with large synaptic
weight, unless feedback is turned off deliberately (Fig. 11,
rows 3b and 3d). On the other hand, an inhibitory
synapse seems to have less effect on the covariance of its
pre- and postsynaptic neurons if there are other excita-
tory sources sent to the postsynaptic neuron. This is
shown by the weak covariance between the Ib afferent
and the aMN (Fig. 9), which have an inhibitory synapse
with the presence of Ia feedback. As a result, the absence
of Ib feedback does not change the covariance much
(Fig. 11, row 3c). However, if the inhibitory synapse be-
comes the only source for the postsynaptic neuron, it will
in turn dominate the covariance of its pre- and pos-
tsynaptic neurons with a negative value. This is shown
when the Ib afferent inhibits the aMN without the pres-
ence of Ia feedback. Finally, when both Ia and Ib feed-
backs are turned off, the covariance between Ia, Ib, and
aMN drops to some small value which depends on the
pattern of movement.

It is interesting to note that Ia and Ib afferents be-
come strongly co-varying when the c dynamic excitation
of the muscle spindle is absent (Fig. 11, row 3a). This
might imply their high redundancy. However, this
covariance will decrease if a variable descending com-
mand or different load pattern is given.

5 Conclusion and future work

In this paper the human-like performance of the Neural
Controller and Testing Elbow has been successfully dem-
onstrated in both open loop and closed loop conditions.
In open loop conditions, joint stiffness was effectively
controlled by muscle co-contraction. In simple closed
loop conditions, joint stiffness increases significantly
when the synaptic weight from Ia afferent to aMN in-
creases, and decreases significantly when the synaptic
weight from Ib inhibitory interneuron to aMN increases.
By implementing a model of human spinal reflex neural
circuitry in the controller, the elbow joint response
to transient perturbation resembled experimental
results in humans. Muscle co-contraction with afferent
feedback greatly increased the system damping factor
and shortened the settling time of the transient damped
oscillation.

By utilizing the flexibility and repeatability of the
Neural Controller, networks with modified synapses or
neural activation dynamics were tested systematically to
predict the results of experiments which are impossible to
perform on human subjects. These tests also elucidated
the roles of several synaptic connections and neurons.
For example, the results reveal that c dynamic excitation
is essential to produce the velocity feedback of the Ia
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afferent signal, which then effectively increases the closed
loop damping factor. Second, the aMN activation dy-
namics works as a feedforward phase-lead controller to
compensate the lowpass-filtering effect of muscle, and to
maintain the system open loop bandwidth and phase in
a closed loop controllable condition.

Finally, the covariance diagram was a useful method
for visualizing relationships between large numbers of
neurons and physical variables.

In the future it will be possible to extend the emulated
neural circuitry to perform multi-joint tasks with
an anthroform robotic arm (Hannaford et al. 1995)
(shoulder and elbow joints). However, due to the large
number of synapses and neurons, a neural learning
method will become more important for tuning the
network parameters. A Hebbian type algorithm (Hebb
1949) may be the most desirable one, which can be
easily integrated into the controller and can run in real
time.

The implementation of higher-level feedforward and
feedback control neural circuitries will cause greater diffi-
culties. Physiological experimental data on these
pathways are very rare (even from animals). However,
substantial data are available from single-unit recordings
(Fetz et al. 1989; Yetz 1993) and models (Borghese and
Arbib 1995). The integration of this knowledge into
a predictive model of movement, posture, and contact
control will be a major role for physical replica models
such as the anthroform arm.
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