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Abstract Scientific research involves mathematical modelling in the context of an 
interactive balance between theory, experiment and computation. However, com-
putational methods and tools are still far from being appropriately integrated in the 
high school and university curricula in science and mathematics. In this chapter, we 
present a new way to develop computational modelling learning activities in sci-
ence and mathematics which may be fruitfully adopted by high school and university 
curricula. These activities may also be a valuable instrument for the professional 
development of teachers. Focusing on mathematical modelling in the context of 
physics, we describe a selection of exploratory and interactive computational 
modelling activities in introductory mechanics and discuss their impact on student 
learning of key physical and mathematical concepts in mechanics.

1  Introduction

Science is an evolving structure of knowledge based on hypotheses and models 
which lead to theories whose explanations and predictions about the universe must 
be consistent with the results of systematic and reliable experiments (see, e.g. 
Chalmers 1999; Feynman 1967). The process of creating scientific knowledge is an 
interactive blend of individual and group reflections which involve modelling 
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processes that balance theory, experiment and computation (Blum et al. 2007; 
Schwartz 2007; Slooten et al. 2006). This cognitive frame of action has a strong 
mathematical character, since scientific reasoning embeds mathematical reasoning as 
scientific concepts and laws are represented by mathematical entities and relations. 
In this process, computational modelling plays a key role in the expansion of the 
science and mathematics cognitive horizon through enhanced calculation, exploration 
and visualisation capabilities.

Although clearly linked to real world phenomena, science and mathematics are 
thus based on abstract and subtle conceptual and methodological frameworks 
which change along far from straightforward evolution timelines. These cognitive 
features make science and mathematics difficult subjects to learn, to develop and to 
teach. In an approach to science and mathematics education meant to be effective and 
in phase with the rapid scientific and technological development, an early integration 
of computational modelling in learning environments which reflect the explor-
atory and interactive nature of modern scientific research is of crucial importance 
(Ogborn 1994). However, computational knowledge and technologies, as well as 
exploratory and interactive learning environments, are still far from being appropri-
ately integrated into high school and university curricula in science and mathe-
matics. As a consequence, these curricula are generally outdated and most tend to 
transmit to students a sense of detachment from the real world. These are contribut-
ing factors to the development of negative views about science and mathematics 
education, leading to an increase in student failure.

Physics is a good illustrative example. Consider the general physics courses 
taken by first year university students. These are courses which usually cover a 
large number of difficult physics topics following a traditional lecture plus labora-
tory instruction approach. Due to a lack of understanding of fundamental concepts 
in physics and mathematics, the number of students that fail in examination tests 
is usually very high. Moreover, many students that eventually succeed also reveal 
several weaknesses in their understanding of elementary physics and mathematics 
(Halloun and Hestenes 1985; Hestenes 1987; Hestenes et al. 1992; McDermott 
1991; McDermott and Redish 1999).

Although it is clear that there are many reasons behind this problem, it is also 
clear the solution has to involve changes in the physics education model. Indeed, 
many research studies have shown that the process of learning can be effectively 
enhanced when students are involved in the learning activities as scientists are 
involved in research (Beichner et al. 1999; Handelsman et al. 2005; Keiner and 
Burns 2010; Mazur 1997; McDermott 1997; McDermott and Redish 1999; Redish 
2004). In addition, several attempts have been made to introduce computational 
modelling in research-inspired learning environments. The starting emphasis was 
on professional programming languages such as Fortran (Bork 1967) and Pascal 
(Redish and Wilson 1993). Although more recently this approach has evolved to 
Python (Chabay and Sherwood 2008), it still requires students to develop a working 
knowledge of programming, a generally time-consuming and dispersive task which 
can hinder the process of learning physics. The same happens when using scientific 
computation software such as Mathematica and Matlab. To avoid overloading 
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students with programming notions or syntax, and focus the learning process on 
the relevant physics and mathematics, several computer modelling systems were 
created, for example, Dynamical Modelling System (Ogborn 1985), Stella (High 
Performance Systems 1997), Easy Java Simulations (Christian and Esquembre 
2007) and Modellus (Teodoro 2002).

In this chapter, we discuss how Modellus (see http://modellus.fct.unl.pt) can 
be used to develop exploratory and interactive computational modelling activities 
which can be adopted by high school and university curricula in science and 
mathematics as well as be a valuable instrument for the professional development 
of teachers. Focusing on mathematical modelling in the context of physics, we 
describe activities in introductory mechanics which were implemented in a new 
course component of the general physics course taken by first year biomedical 
engineering students at the Faculty of Sciences and Technology of the New Lisbon 
University (FCT/UNL). For mathematics education, these activities are relevant as 
concrete applications of mathematical modelling (Carson 1999; Garcia et al. 2006; 
National Research Council 1989).

2  Course Organisation, Methodology and Student  
Evaluation Procedures

Let us start by describing the implementation context for the computational 
modelling activities. The organisation, methodology and evaluation strategies used 
in general physics can serve as a model to be adapted to other areas of science and 
to mathematics.

The 2009 general physics course for biomedical engineering involved 115  
students, 59 of them taking the course for the first time. The structure and pro-
gramme themes were those of the 2008 edition (Neves et al. 2009). In the 
computational modelling classes, students were organised in groups of two or 
three, one group for each available computer. In each class, the groups worked on 
a set of five computational modelling activities conceived to be interactive and 
exploratory learning experiences about challenging but easily observed physical 
phenomena. An example is the motion of a swimmer in a river with a current 
(Neves et al. 2009). The teams were motivated to solve the problems on their own 
using the physical, mathematical and computational modelling guidelines provided 
by the class documentation. To ensure adequate working rhythm with appropriate 
conceptual, analytical and computational understanding, the students were con-
tinuously helped during the exploration of the activities.

All activities were created as computational modelling experiments with Modellus. 
Each class activity was presented in a PDF document, with text and embedded video 
support to help students both in class or at home in a collaborative online context 
based on the Moodle online learning platform. To design the activities, emphasis was 
placed on cognitive conflicts in the understanding of physical concepts, the manipula-
tion of multiple representations of mathematical models and the interplay between the 
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analytical and numerical approaches applied to solve problems in physics and 
mathematics. In this course, the majority of the supporting text and videos presented 
complete step-by-step instructions to build the Modellus mathematical models, 
animations, graphs and tables. After constructing the models, students explored the 
multiple representations available to answer several questions about the proposed 
general physics problems. Some activities involved modelling problems where 
students saw only videos of the Modellus animations or graphs. After this they con-
structed the mathematical models to reproduce the animations or graphs, and answer 
proposed questions. Modellus was particularly effective in these classes because of 
the following main advantages: (1) an easy and intuitive creation of mathematical 
models using standard mathematical notation, (2) the possibility to create anima-
tions with interactive objects that have mathematical properties expressed in the 
model and (3) the simultaneous exploration of images, tables, graphs and object 
animations.

The student evaluation procedures in the computational modelling classes involved 
group evaluation and individual evaluation. For each class, all groups had to build 
five Modellus models and complete a Moodle online test answering the questions 
of the corresponding activity PDF document. The individual evaluation consisted of 
the solution of two homework activities and a final test, both with new problems 
based on those covered in class but with only partial text and video instructions on 
how to build the models and solve the problems. Students also took pre-instruction 
and post-instruction Force Concept Inventory (FCI) tests (Hestenes et al. 1992) 
which did not count for their final classification. At the end of the semester, students 
answered a Likert scale questionnaire to access their degree of receptivity to this 
new computational modelling component of the general physics course.

3  Computational Modelling Activities with Modellus

Let us now discuss, as illustrative examples, two of the computational modelling 
activities about circular motion and oscillations, the theme opening the second part 
of the course. Again, these are thought not only from the point of physics but also 
from the point of view of mathematics in order to help students make connections 
between different subjects.

A particle in circular motion (representing, for instance, a runner going around 
a circular track) describes a circle of radius R, a mathematical curve defined by 
x2 + y2 = R2 in a Cartesian reference frame O xy whose origin is at the centre of the 
circle. In this frame, x and y are the Cartesian coordinates of the position vector r

 . 
This vector has magnitude R and specifies where the particle is on the curve. As the 
particle moves around the circle, the magnitude R is kept constant but the direction 
of r
  changes with time. This direction is given by the angle q that r

  makes with 
the O x axis. The variables R and q define the polar coordinates of r

 . The coordi-
nates x and y are also time dependent and are related to R and q by trigonometric 
functions: cos( ) and sin( )x R yθ θ= = .
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To explore circular motion, students started with uniform circular motion. When 
the circular motion is uniform, the particle traces one circle in every constant 
time interval T. This time interval is the period of the motion and its inverse f = 1/T 
is the frequency of the motion. The angle q is then a linear parametric function of 
the time t, q = w t + q

0
 where w = 2p/T is the motion angular frequency, measured in 

radians per second, and q
0
 is the initial direction of r

 . The velocity v
  is tangent 

to the circular trajectory, always orthogonal to r
 , and has constant magnitude 

v = w R. The acceleration 

α  has magnitude a = w  2 R and a centripetal direction, 

that is, opposite to r
 . The uniform circular motion is the composition of two 

simple harmonic oscillations: one along the Ox axis and the other along the Oy axis. 
These oscillations are characterised by the same amplitude A = R and the same 
frequency f = 1/T. The initial phase of the Ox oscillation is q

0
, and between them, 

there is a time-independent p/2 phase difference.
To model this type of motion, students had to recall what they learnt in the first 

part of the course during the computational modelling activities about vectors, 
parametric equations of motion, velocity and acceleration (Neves et al. 2009). 
Building on this prior knowledge, students were able to construct a model asso-
ciating the Cartesian coordinates of r


 to the corresponding polar trigonometric 

functions with the angle q given by the linear parametric equation q = w t + q
0
. They 

were also able to define the coordinates of v
  and 


α  (see Fig. 33.1). This mathe-

matical model was complemented with graphs and tables of the different coordinate 
variables as functions of time, and by an animation allowing direct manipulation of 
the independent parameters of the model, R, T, q

0
, as well as real time visual display 

of the trajectory of the moving particle, r
 , v
 , and 


α . The harmonic oscillatory 

motions along the coordinate axis were also represented (see Fig. 33.1). With 
this model, students were able to explore, visualise and reify the initially abstract 
physical and mathematical concepts associated with uniform circular motion. For 
example, by combining the information from the several different simultaneous 
representations, they analysed the motion of a particle tracing a circle of radius 
R = 150 m every 2.5 min, and were able to compare v

  and 

α  as functions of time 

and to calculate these vectors at time t = 7 min.
During these activities, students showed difficulties in distinguishing between a 

vector, like v
  or 


α , and its magnitude. They were also puzzled when asked to solve 

the same problem considering the angles measured in degrees instead of radians. 
Indeed, at first, students were frequently unable to create v

  and 

α  with the correct 

magnitude and direction. Similarly, they did not place the angle conversion factor 
in the correct place everywhere in the mathematical model. For example, in their cor-
rrect attempt, they incorrectly multiplied the speed by 180/p. To be able to correct 
the models and at the same time visualise the effect of the change in the animation 
and other model representations was for the students an essential advantage of the 
modelling process with Modellus in helping them to solve these learning difficulties.

Using and extending this trigonometric model, students were then able to con-
struct a model in Modellus to estimate the solution to the following astronomical 
problem: What is the time interval between two successive oppositions of the Earth 
and Mars? To help students, we suggested the assumption of considering the motions 
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of the Earth and Mars around the Sun to be uniform circular motions. We also 
taught them to use the average Earth–Sun distance (known as the astronomical unit 
and denoted by AU) as the distance scale for the problem. In this scale, the average 
Earth–Sun distance is simply 1 AU and the average Mars–Sun distance is 1.53 AU. 
Taking into account that the approximate motion periods of the Earth and Mars are, 
respectively, 1 year and 1.89 years and using the year as the unit of time, students 
were able to develop a mathematical model and an animation representing the 
motions of the Earth and Mars around the Sun. In the process, they were able to 
determine the angular velocities of both planets and the time interval between two 
successive oppositions. Using the conversion factors 1 AU = 1.50 × 108 km and 
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Fig. 33.1 Uniform circular motion: equations as seen in the Modellus Mathematical Model win-
dow, examples of coordinate-time graphs and the Modellus animation
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1 year = 3.15 × 107 s, they were also able to find in km/s the orbital velocities of 
the Earth and Mars at the time of the model first occurring opposition. To achieve 
the precision required by the Moodle online test, students used a position vector or 
velocity coincidence method. The adjustment of the numerical step was an important 
numerical technique students learned to apply to obtain animations with realistic 
trajectories and correct answers to the questions of this astronomical challenge.

4  Conclusions

In this chapter, we have shown how Modellus can be used to develop exploratory 
and interactive computational modelling activities for science and mathematics 
education. We have described examples in introductory mechanics which were 
implemented in the general physics course taken by first year biomedical engineer-
ing students at FCT/UNL. We have shown that during class, the computational 
modelling activities with Modellus were successful in identifying and resolving 
several student difficulties in key physical and mathematical concepts of the course. 
Of crucial importance in this process, was the possibility to have a real time visible 
correspondence between the animations with interactive objects and the object’s 
mathematical properties defined in the model, and also the possibility of manipulat-
ing simultaneously several different representations such as graphs and tables. Thus 
with Modellus, students can be exploring authors of models and animations, and 
not just simple browsers of computer simulations.

The successful class implementation of the computational modelling activities 
was reflected in the student answers to a Likert scale questionnaire (see Fig. 33.2), 
with results improving slightly on those of the 2008 edition (Neves et al. 2008). 
Globally, students reacted positively to the activities, considering them to be helpful 
in the learning process of mathematical and physical models. For them, Modellus 
was easy enough to learn and user-friendly. In this course, students showed a clear 
preference to work in teams in an interactive and exploratory learning environment. 
The computational modelling activities with Modellus presented in PDF documents 
with embedded video guidance were also considered to be interesting and well 
designed. A natural sense of caution in relation to novelty and to evaluation procedures 
was nevertheless detected. Students also felt that the content load was heavy and that 
the available time spent on the computational modelling activities was insufficient.

In spite of global success during the class implementation phase, the FCI test 
results led to an average FCI gain of 22%, an indication that the general physics 
course with the computational modelling component is just performing as a tradi-
tional instruction course (Hake 1998). Although this performance score refers to 
the general physics course as a whole, the results of the questionnaire and students’ 
opinions about the computational modelling component also indicate that some 
aspects of the implementation approach should be changed. In this context, possible 
ways forward are: (1) Increase the relative importance and value of the computa-
tional modelling component. (2) Reduce the heavy content load (as perceived by 
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students). (3) Increase time spent on the modelling tasks. (4) Choose problems more 
closely related with the specific subject of the student’s course major. (5) Introduce 
less guided, more discovery-oriented instruction guidelines as well as computational 
modelling problem finding.
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