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Abstract

The development of knowledge in science and mattiesnavolves modelling processes where
theory, experiment and computation are dynamidaligrconnected. For education in these fields to
be in contact with their rapid progress and clasethe nature of research, it is crucial that both
curricula and learning environments from high s¢hoouniversity manifest effectively a balanced
interplay between theoretical, experimental and mpaational elements. We present an approach to
improve the integration process of computationaldetiing in the science and mathematics high
school and university curricula while respecting ttognitive balance between theoretical aspects,
experimentation and scientific computation. Astsgg, we propose the creation of learning actisitie
built around exploratory and expressive computafionodelling experiments which are presented in
digital documents where the fundamental concepispanblem solving processes are explained using
interactive text, images and embedded movies. Biogdehe activities, special emphasis is given to
cognitive conflicts in the understanding of sciBatand mathematical concepts, to the manipulation
of multiple representations of mathematical modeisl to the interaction between analytical and
numerical solutions. We discuss illustrative exasptonstructed with Modellus which are relevant

for the high school and undergraduate universityicuia in mathematics and physics

Keywords: computational modelling, science and mathematicea&tion, cognitive processes.
1. Introduction

Science is a historically evolving structure of Wiedge, based on hypothesis and models that
generate theories, which aims to describe the ceitigo, architecture and dynamics of the universe.
Fundamental characteristics of science are thaambsbtature of scientific concepts, methods and
reasoning, the fact that their precise and operatiaescriptions are written in the language of
mathematics and the requirement that scientific efeodnd theories must lead to results which are
consistent with systematic and reliable experimgisee, e.g., Chalmers, 1999; Crump, 2001,
Feynman, 1967). The creation of scientific knowkedg a complex cognitive process where
interactions between individual and collective @efions lead to the development of modelling astion
which involve a balance between theory, experinaadt computation (Blum, Galbraith, Henn & Niss,
2007; Neunzert & Siddiqi, 2000; Schwartz, 2007;08o, van den Berg & Ellermeijer, 2006). This is
a process with a strong mathematical charactersecscientific modelling has the objective to find,
interpret and validate approximate representatairnsystems, which are defined by sets of concepts
whose specifications and relation mechanisms argcritbed using mathematical entities and
operations. In this context, computational modgliptays a key role in the expansion of the science
cognitive horizon for allowing more calculation amtbualization power in the exploration of the
universe. This important role is extended to mathiges and the corresponding exploration of abstract
worlds, and also to technology and engineering.

The close connection between science and mathesntitecdeep abstract nature of both fields
and their historical dependence are important factwhich make science and mathematics
intrinsically difficult subjects to learn and toath. Although it is clear that this degree of ctigai
difficulty is independent of the use of computatibknowledge and technologies, it is likewise clear
that science and mathematics education should bleses as possible to the nature and progressof th
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research processes in science and mathematicslaaswie the rapid development of technology. To
effectively implement this view of science and negifatics education, it is crucial to achieve anyearl
integration of computational modelling in learnirgnvironments which reflect the multiple
components of research (Ogborn, 1994). Howevem @vdechnologically advanced countries, the
integration of research inspired learning environtse computers, computational knowledge and
software has not yet been fully accomplished indtience and mathematics curricula designed for
high school and undergraduate university levelsaAsnsequence, the majority of these curricula are
outdated and students tend to feel that what tleeynlis detached from the real world. This
contributes to the development of negative opinesut science and mathematics education and is a
factor leading to an increase in student failure.

The general physics curricula for first year undadgate university students are illustrative
examples of this problem. In general, the corredpan courses follow a traditional lecture plus
laboratory instruction approach and cover a largenlrer of physics topics that students find
particularly difficult. The choice of pedagogicatgy, the number and content of the physics topics
and the type of examples chosen to apply the fued#h concepts and methods is usually
independent of the specific major. Often, the matdical and physics knowledge are not
appropriately connected. Modelling activities, ilwing computational knowledge or not, are
generally absent from these courses. Hence, therityapf students are unmotivated passive listeners
of the theoretical lectures which, without muchuglot, try to memorize formulas to solve typical
exam problems. Their knowledge is weak and highigrhented both in physics and mathematics.
Consequently, the number of students that faillendourse examinations is usually very high and
many of those that eventually succeed manifestigterd weaknesses in their understanding of
elementary physics (Halloun & Hestenes, 1985; Hheste 1987; Hestenes, Wells & Swackhamer,
1992; McDermott, 1991).

Scientific research in physics education has shthan it is possible to improve the student
learning results when they are guided to be inwblwe the learning activities in a way that
approximates the kind of involvement scientistsehiavtheir research activities (Beichner et al99,9
Handelsman et al., 2005; Keiner & Burns, 2010; MaA997; McDermott, 1997). This is not a
surprising result. Scientific research in physgsan interactive and exploratory process of craeatio
testing and improvement of mathematical models diestribe observable physical phenomena. It is
this cognitive process that leads to an inspirimglewstanding of the mechanisms underlying the
behaviour of physical systems. As a consequengsigghshould be expected to be more successfully
taught in research inspired learning environmertiere students are helped by teachers to work as
scientists do. In this kind of class environmempwledge performance is better promoted and
common sense beliefs as well as incorrect scientiias can be more effectively fought.

The research process in science and mathemascpjmrted by a continuously evolving set
of analytical, computational and experimental téghes. The same should be true for the
corresponding learning processes, particularly hmatwconcerns the role played by computational
knowledge and technologies in the learning acésitiSeveral attempts have already been made to
introduce elements of computational modelling iresce learning environments. Initially, the focus
was on professional programming languages suchoasaR (Bork, 1967) and Pascal (Redish &
Wilson, 1993). Although more recently this approdes evolved to Python (Chabay & Sherwood,
2008), it remains a fact that it demands studeatddvelop extensive working knowledge of
programming, a time consuming task which makes dratkde process of learning the matters of
science. The same happens with scientific computatoftware such as Mathematica or Matlab. To
avoid overloading students with external prograngmnotions or syntax, and focus the learning
process on the relevant scientific and mathemakicalvledge, several computer modelling systems
have been created, for example, Dynamical Modell®ygstem (Ogborn, 1985), Stella (High
Performance Systems, 1997), Easy Java Simulatiohsestian & Esquembre, 2007) and Modellus
(Teodoro, 2002, 2004).

A balanced integration of computational modellingpWledge and technologies in learning
environments for science and mathematics educ#iothus, both a curricular and a technological
innovation challenge. In this work, we present ppraach which aims to improve the integration of
computational modelling in the science and mathesdtigh school and undergraduate university
curricula and, at the same time, to respect thaitieg balance between computation, experiment and
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theory. We argue that Modellus (a freely availaaé&ware tool developed in Java which is able to ru
in all operating systems, see the software web@ddetp://modellus.fct.unl.ptcan be used, and
progressively enhanced, as a central element sfaproach. Our strategy involves the creation of
learning activities centred in exploratory and egsive computational modelling experiments which
are presented in digital documents explaining timelAmental concepts and problem solving processes
using interactive text, images and embedded movies. activities are designed to give special
emphasis to the onset of cognitive conflicts in timlerstanding of scientific and mathematical
concepts, to the manipulation of multiple repreatons of mathematical models and to the interplay
between analytical and numerical solutions. Thetwity documents can be adopted as a whole or
partially by high school and undergraduate unitgmdurses in science and mathematics. In addition,
they can also be useful for the professional dewrent of high school and university teachers, and
may be easily adapted to e-learning courses, beamgplemented with online tests in standard
formats. We discuss illustrative examples which eelevant for high school and undergraduate
university curricula in mathematics and physics.

2. Learning science and mathematics, computational modelling and M odellus

The construction of scientific and mathematical Wealge requires unambiguously clear
declarative, operational and conditional speciiizat of abstract concepts and of the relationdiegis
among them. Crucially important for the understagdof the resulting models or theories is the
interpretation and validation process which inveleperational familiarization, stringent consistienc
requirements and a clear connection with the relereferents, either in the observable universia or
abstract mathematical worlds (Reif, 2008). Due toranpowerful calculation, exploration and
visualization capabilities, computational knowledgad technologies can amplify the cognitive and
motivation horizon of the learning process and leEadeeper operational familiarization, consistency
awareness and connection with the appropriateerefer To be able to fulfil such an important role,
computers, computational methods and software dhioelused not only to display text, images or
simulations but as tools for modelling integrataddarning environments reflecting the exploratory
and interactive nature of modern research. In Bgithe computational modelling process should be
focused on the meaning of models and avoid learopagity factors such as too much programming
and specific software knowledge.

Clearly, this educational challenge cannot be mgeditmply choosing a subset of programming
languages and professional scientific computatioftware. It is necessary to develop computer
software systems with computational modelling fioralities that contribute to a progressive growth
of solid cognitive competencies in science and erattics. In this context, Modellus stands out as a
possible key computational modelling system becatisise a domain general environment for
modelling (Schwartz, 2007) with the following maidvantages:

1) An easy and intuitive creation of mathematicaddels using standard mathematical

notation.

2) The possibility to create animations with intdhee objects that have mathematical

properties expressed in the model.

3) The simultaneous exploration of multiple repreaions such as images, tables, graphs and

animations.

4) The computation and display of mathematical ¢tias obtained from the analysis of

images and graphs.

These features allow a deeper cognitive contachadels with their referents and a deeper
operational exploration of models as objects whaiah simultaneously abstract, in the sense that they
represent relations between mathematical entdied,concrete, in the sense that they may be directl
manipulated in the computer.

As a domain general environment for modelling, Mhdecan be used to design learning
activities which involve the exploration of exiggimodels and the development of new ones (Bliss &
Ogborn, 1989; Schwartz, 2007). These modelling/iets can be collaborative and can be conceived
to emphasize cognitive conflicts in the understagddf scientific and mathematical concepts, the
manipulation of multiple representations of mathgoah models and the interconnection between
analytical and numerical approaches to solve proflén science and mathematics. As much as
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possible, the modelling activities should consiealistic problems to maximize the cognitive contac
between models and real world referents. This éhallenge because more realistic problems are
generally associated with more complex analytiatsas which are beyond the analytic capabilities
of high school or first to second year universitydents. With Modellus and numerical methods,
which can be conceptually simpler and yet poweth#, interactive exploration of models for more
realistic problems can start at an earlier agewatlg students a closer contact with the model
referents, an essential cognitive element to ajgieethe relevancy and power of models, necessarily
a partial idealized representation of their refesen

The development of this kind of computational mbdglactivities, in a way that is adequate
to the various areas of science and mathematicbpimd to require a richer set of modelling
functionalities which are not yet available in Mbds. This is a trigger for technological evolution
which should be accomplished by a Modellus enharoémprogram. Currently under development
and set to appear in forthcoming versions of Magelbare, for example, the following new
functionalities: spreadsheet, data logging and editting capabilities, advanced animation objects
like curves, waves and fields, 3D animations araplgs, creation of a physics engine for motion and
collisions, video analysis and cellular automatalets.

The simultaneous development of new functionalitiesneet appropriate teaching goals is
important because it reduces the learning opaaiiof associated with an unnecessary proliferatfon
tools. However, there is a learning stage wheig aidvantageous to allow diversity and complement
Modellus with other available tools. Indeed, ineaxh inspired learning environments one of the
objectives is to make a progressive introductiopriofessional computation methods and software.
For example, Excel is a general purpose spreadstege modelling is focused on the algorithms. In
addition, it already allows data analysis from dirgata logging. On the other hand, Mathematica and
Matlab (or wxMaxima, a similar but freely availableol) have powerful symbolic computation
capabilities. Using these different tools to impésrnthe same algorithm is an important step tanlear
the meaning of the algorithm instead of the symifaa particular tool. For more realistic simulason
Modellus animations can be complemented, for examyth EJS.

3. Interactive PDF documentsfor interactive lear ning environments

To reflect the nature of research, the environmémtkearn science and mathematics with
computational modelling should be adapted intevacéingagement environments (Beichner et al.,
1999; Keiner & Burns, 2010; Mazur, 1997; McDermdt§97) where students are organized in
collaborative groups of two or three, one groupdach available computer. In these environments,
the student teams are continuously helped in tbein processes of exploring and solving the
computational modelling problems posed in the legractivities. Whenever necessary, global
discussions are conducted to keep the pace, todinte new themes, to clarify any doubts on
concepts, reasoning or calculations, and for stisderpresent the results of their work.

An important element of these research inspiredrenments is the document concept to
present the set of learning activities. In our apph, we propose the creation of digital PDF
documents which explain the fundamental modellidgas and problem solving processes using
interactive text, images and embedded movies. Taifntheir level of interactivity, these documents
include free space to allow students to write aggister in the document itself the results of their
exploratory or expressive modelling actions, ingtgdall that is necessary to complement the
document information, for example, text commenthemes, images and internet searches. The use of
these interactive digital documents is another dppdy to improve the students ICT skills,
particularly those related to work presentation eachmunication. All learning documents, including
evaluation tests, are to be made available orfiimesxample, through the Moodle e-learning platform

4. Computational modelling activities: examples from physics and mathematics

We have made a progressive application of our amhroimplementing a series of
computational modelling activities built with Modled in the 2008 and 2009 editions of the general
physics course offered to first year biomedicalieegring students at the Faculty of Sciences and
Technology of the New Lisbon University (Nevesy8&i& Teodoro, 2008, 2009 and 2010). For other
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educational applications and evaluation tests ofdéflas as a tool for learning mathematical
modelling with computers see, e.g., Aradjo, Veitv®reira (2008), Dorneles, Araujo & Veit (2008)
and Teodoro (2002).

The course was split into lectures built arounceacd key experiments where the general
physics topics were first introduced, standard pmsydaboratories and computational modelling
classes following our methodological approach. Tdeneral physics program offered to the
biomedical engineering students was based on ldg/liResnick & Walker (1997), Tipler (1991) and
Young and Freedman (2004), complemented with agpdies of physics to biology and medicine.
Following its structure the computational modellisgmponent covered eight basic themes in
mechanics (Teodoro, 2006): 1) Vectors.

2) Motion and parametric equations.

3) Motion seen in moving frames.

4) Newton'’s equations: analytic and numerical sohg.
5) Circular motion and oscillations.

6) From free fall, to parachute fall and bungeeging.
7) Systems of particles, linear momentum and ¢oiis
8) Rigid bodies and rotations.

In each computational modelling class of the cqutbe student teams worked on an
interactive digital PDF document containing a smalimber of problems connected with easily
observed real world phenomena, which was complesdeby an online Moodle test where the
answers to the document questions were insertatiodgh this was an undergraduate university
course, many of the program themes involved rewiaidivities discussing physical and mathematical
concepts at the high school level. In what follomesillustrate our computational modelling approach
discussing a selected set of examples associatadthvis course which can be useful for both high
school and early undergraduate university curriculahysics and mathematics.
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Figure 1. Mathematical model and animation defining the magtg, direction and the sum of two vectors. The
direction angles are given in degrees in the nawagaconvention where the angle varies between d 360
clockwise starting from the North or, in Modell@xy reference frames, from the positi@y axis.

Let us start with vectors, the first theme of thengral physics computational modelling
course. A vector is an abstract mathematical edéfined by a magnitude and a direction. In physics
it is used to describe many important quantities noeasures, for example, the velocity, the
acceleration or the force acting on a particle.ngsModellus students can create vectors in the
animation workspace and directly interact with the&nvisualise and reify many of its abstract
mathematical properties. Indeed, when a vectoreated it is immediately possible see its scaldr an
vector components on the screen. By simply usiegctimputer mouse to drag the tip of the vector,
students can change its magnitude or its directiowl, explore the effect on the scalar and vector
components. Furthermore, introducing the vectorradioates as parameters and using Modellus
predefined elementary functions, students can bésdaught to construct mathematical models to
define the magnitude and the direction of any wectbe sum and subtraction of vectors, the
multiplication of a vector by a scalar as well las scalar and vector product of vectors (see figire
Students can then start modelling physical or géaoa¢ problems involving vectors and vectors
operations.
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A simple example requiring the definition of vecthirections and the sum of position vectors
is that of a boat trip (see figure 2). Suppose at teaves a port following the direction 045 (i th
navigation convention, see caption in figure 2)teAfsailing for 5 nautical miles, the boat changes
direction and continues to move eastwards for 1@emailes. Considering 2 significant figures, find
out what is the final distance between the boatthagoint of departure. Where is the boat, ifgb&
is taken as the reference point and what is tfa digtance travelled by the boat? With this modgll
problem, students can be made aware of potentifitudiies in using trigonometric functions to
define direction angles in the navigation convantguch as different conventions to define theemg|
and how the angle trigonometric formula change #ithdirection quadrant. The possibility to correct
the models and simultaneously visualise the effé¢he change in the vectors of the animation is a
powerful cognitive aid to solve this kind of podeitmodelling problems. After completing this
activity, students can use Modellus to make iteeatextensions and continue the boat trip,
determining at each intermediate point the loctibraand total distance travelled. A possible
modelling activity starts with the visualisation af movie embedded in the PDF document and
showing a boat trip with several direction chaniges Modellus animation. After seeing the movie the
students are guided to construct a model that dejees the motion. In this way, students can be
introduced to the concept of approximate trajectand by seeing it on the animation screen they can
construct a deeper connection with the correspgndial world referent.

x1 =5 =xcos( 45 )

y1=5 xsin( 45 )

11=5

¥2 =10

Y2 =1

12 =1

sumx = x1 + x2
= Wl + ¥ 2

sLmy

mag_sum = ( sUamx T+ sUmy T J

sumy
dir_sum =90 -arctan
SLImx

tofal dist =r1 +12

Figure 2: The model and animation for the boat trip. Thalfidistance to the port is 14
miles and the direction 75.4 degrees. In this jeyrthe boat travelled 15 miles.
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Figure 3: The model and animation for the geometric prob&buout the circumference at the straight
line which involves the scalar product of two vesto

An example of a purely geometrical problem involyirectors and their scalar product is the
following: consider a point P, say P = (50, 70gttls located in a circumference centred in thgimwri
of a Cartesian reference frame. Find the paramatrit Cartesian equations of the straight line that
passes through P and is tangent to the circumfer&imow that Q = (-125, 195) is on the straigl lin
and determine the corresponding equation pararketer this activity, students start by watching a
movie of the Modellus animation and then are heljpecbnstruct the mathematical model, reproduce
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the animation and solve the problem (see figure T3)e animation is constructed with two
perpendicular vectors, two geometrical objects, ca@esenting the circumference and the other
representing the straight line, a particle to repn¢ the point Q and a level indicator for the ¢éigua
parameter k. A pen is included to draw the grapthefstraight line. In this model the coordinatés o
the vector pointing to P are independent variables.a consequence, by dragging the tip of this
vector, students can solve the problem for an ramyitpoint P while simultaneously visualising the
changes in the animation geometry. The possibilftgxploring at the same time several different
representations of the model (animation, graph ted mathematical model analytical equations)
allows students a much stronger and concrete d¢egribnnection with the abstract mathematical
model and their entities.

The vector modelling activities involving real wdrphysics problems can help students to
understand that vectors are mathematical objecishvdre used to represent physical quantities that
require both a magnitude and a direction to be ¢etmly specified. As the position vector, the
velocity is another example. The velocity is a famental vector quantity which measures the
instantaneous rate of change of the position wntle.tIn a rectilinear and uniform motion, the veaipc
is constant and the position vector changes ligeaith time. This type of motion can be modelled
with Modellus if the coordinates of the positioncter are associated with the corresponding
parametric functions. Students can explore interalgtseveral rectilinear and uniform motions oe th
plane using mathematical models with parametriaggns, graphs of the coordinates as functions of
time and particle animations representing the motiajectory (see figure 4). The possibility to ,see
simultaneously, trajectories and different coortbngraphs is a powerful aid in helping them to
manipulate, distinguish and correctly interpresthdifferent representations of this kind of models

¥x=-10=f+200

yw==100+5 x t

Figure 4: Mathematical model and animation for a rectilinand uniform motion showing that the
graphs of the coordinates as functions of time @early not to be confused with the particle
trajectory.

At the end of the classes covering vectors, uniforation and parametric equations, students
showed ability to complete computational modelliagtivities requiring knowledge on how to
characterise displacement vectors and velocitiesth®ir magnitude, direction and Cartesian
coordinates as well as knowledge about the paramefuations of motion. For example, all the
student groups were able to develop models to saekanimate the following problem about the
motion of a car (see figure 5): a car is detect&chdaway when is moving to the east. Seven minutes
later the car is found 10 km away in the direct@85. What is the distance travelled by the car
between the two detection points? Where does thglatiement vector points? Assuming that the
motion is uniform and rectilinear, determine théoedy of the car.
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Figure 5: Modelling the motion of a car. The car travelle@Bkm approximately in the
direction 012 at a speed equal to 72 km/h.

The third theme of the general physics course vedetive motion. With Modellus it is
possible to create cognitive conflicts to help stud realise that observers in reference framesngov
with constant velocities can have very differerdws of a same motion. These different views are in
fact related by a Galilean velocity transformatiorgking this a concrete application of an important
mathematical concept, a linear vector transformafgee, e.g., Apostol (1975) and Courant & John
(1989)). For example, with Modellus students cameh@nd construct an animation representing the
motion of a swimmer in a river with a downstreannrent (see figure 6). When the swimmer tries to
move up stream with the same speed as the dowmstreaent it does not move at all relative to an
observer on the river margin. However, for an obmeon a boat dragged by the current, the swimmer
moves up stream with a speed equal to that ofuhremrt. For a student that is not thinking in tehs
the velocity transformation kinematics this comesaasurprise, a cognitive conflict due to the wrong
expectation that if the swimmer is moving in orenfie then it will also be moving in another frame.

r 4_@ W = 5,00 -

¥C=wlaxt

vC =10

XN =wNx = f M TE

¥M =xC +xN
¥M = yC + yN
¥y = vCx + vNx
My =0

Figure 6: Modelling the motion of swimmer in river with a rcent, an
example of relative motion and of the applicatiohao Galilean velocity
transformation.

At the end of this theme, students groups were tbleuccessfully explore with Modellus
other similar problems, for example, a boat crassirriver with a current (see figure 7). A boagdri
to cross a river which has a current charactetigeithe velocity vector (10, -3) knots. Assume tiinat
sailor verifies that the velocity relative to theter is (0, 10) knots. What is the velocity of themat
measured by a GPS device? If the velocity meadoyatie GPS is (0, 12) knots, what is the velocity
relative to the river water? Students were alsdl@hged to plan a crossing of the river Tejo from
Almada to Lisbon along the 25 de Abril bridge wtike tide is rising (see figure 8). Another example
is the modelling of the motion of a plane in winchynditions. In this set of activities, the interaet
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modelling process with Modellus was important tokeatudents more aware that many different,
everyday life physical situations can be explainsithg the same mathematical model.

xC=yCxxt {8055
YO =30 + vy % £ Peagi

XGPS = yGPSx = T

YGPS = yGPSy » t +5 GPS vB
XB = XGPS - xC

¥B = yGPS - v(C b,

vBx = vGPSx - vCx
vBy = ¥GPSy — ¥Cy

Figure 7. Modelling a boat crossing a river with a currewthen the current
velocity is (10,-3) knots and the velocity measubgdhe GPS is (0, 12) knots, the
velocity relative to the water is (-10, 15) knots.

To finish the first part of the course, studentsieited situations applying Newton’s equations
of motion. The starting question was: what mustpeapfor the velocity to change during motion? If
the velocity is changing then there must be anla®on vector, measuring the instantaneous rate o
change of the velocity with time, and at least applied force. According to Newton'’s second law of
motion, the acceleration vector is obtained diwdine sum of all the forces that act on the partigt
the mass of the particle. If there are no net ®rten there is no acceleration and the velocity is
constant. This is the statement of Newton'’s figst lof motion or law of inertia. If the acceleratimn
known we can use Modellus to calculate the veloaitgt the position of a particle. If the accelematio
IS constant the exact analytical solution is easyetermine and is well known. This makes uniformly
accelerated motions ideal modelling stages to dlite simple numerical methods like the Euler and
the Euler-Cromer methods. Students can then comjhareanalytical and numerical solutions of
Newton’s equations of motion, a notable exampleaadystem of first order ordinary differential
equations which are also discussed in early unddugite mathematics courses (see, e.g., Apostol
(1975) and Courant & John (1989)).

XC=yCx =t

yC =30 + vCy x t
XGPS = yGPSx x T
YGPS = yGPSy x T +5
XB =XGPS - XC

yB = yGPS - ¥C

vBX = vGPSX - vCx
vBy = vGPSY - vCy

Figure 8: Using the Galilean velocity transformation model
to plan a boat trip on the river Tejo.

A concrete problem is the following (see figure S)ppose that the net force applied to a
particle with mass equal to 1 kg is given by thetoe(16, 0) N and that the particle starts atdtigin
of the reference frame with a velocity equal t&b(-8) m/s. Applying the Euler method, find out when
the velocity is zero, and the acceleration as aslkhe position of the particle at that instante Th
model animation is constructed with three objethe particle, a vector representing the velocity
attached to the particle and a vector represethimget force. Because the coordinates of theoneg f
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vector are independent variables and the mod&rative, students can change this vector at widl a

in real time control realistically the motion oftlparticle (see figure 10). In this way students fexe
and resolve another cognitive conflict: to breakn@ that different from accelerating, it is just t
accelerate in the direction opposite to the dioectf the velocity. They can also learn that theich

of a small time step is important to obtain a gewdulation of the motion and that this is the sase
determining a good numerical solution of the eaquregtiof motion. The corresponding acceleration,
velocity and position time graphs can easily bewiiraBy observing these graphical solutions students
are led to realise that, contrary to the constartef example, these are solutions they cannot find
analytically and that numerical methods are indaesimple and powerful way of solving more
realistic problems.

t =34

m=1

Sumkx llet Force
s m SumFy = 0.0 *—-t

SumFy
ay =

m 5

v =last( vx ) +last( ax )= At =®
vy =last( vy ) +last[ ay )= At =D
x=last{ x ) +last wx ) xAf
y =last( y ) +last( vy )xAt =

Figure 9: Solving Newton’s equations iteratively with thel&umethod. The velocity vector is zero for
t=3.4sanck=-94.8 m.

A similar numerical model with the Euler-Cromer hmi can be used to explore, for
example, the problem of throwing of a ball into #ie(see figure 11).

et Foree

£="7.0 B
m=1
SumFx o
ax =
m
SUmFy
ay =
m 2.0 0.0 2 . 4.0
v =last( v ) +last ax )= At e } I
vy =last( wy ) +last{ ay )= At ]
¥ =last( x ) +last( vx)=at e
y =last( y) +last( vy )=At ¥=-212

Figure 10: A motion generated interactively by dragging ialréme the net force vector. The Euler
solution was obtained using a time step equalGa 6.

In this activity, students also interact with thet force vector applied to the ball and simulate
the throw as well as the following motion under dath’s gravity. In this example, an appropriate
time step choice is very important to make a realterow. With the Modellus animation a good time
step can be found by trial and error using the iptgg of changing the mathematical model and
immediately observe the effect of the correctiorttia animation. The same can be done with the
appropriate scales for the animation objects aaghg. With the position and velocity time graphs,
students can determine how long it takes for tHetbaeach the highest point of the trajectory,atvh
is the height of that point and when is the bakémetres up in the air. The students can alse dna
the animation screen the vector diagrams repreggtitie forces acting on the ball, the velocity and
the acceleration during the whole motion. Finally, observing the net force graph as a function of
time, they can estimate the duration of the throw.
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m=1 i i

ay = SumFy pu {oa P o it 180
vy =last( wy ) +last( ay Jxat Sy = <980 | s I

v =last( )+ vy xat ' =200

Figure 11: Throwing a ball with Modellus and the Euler-Cronitrative Newton’s equations. The
highest point of the trajectory isyat 3.8 m, reached after 1.2 s. The ball is 3 mnuihé air fot = 0.8 s
andt=1.6s.

The next naturally following computational modefjiractivity is to compare the analytic
solution for the motion just after the throw withetcorresponding numerical solution obtained using
the Euler method and the Euler-Cromer method (greef 12). For the same sum of applied forces
and the same initial conditions, students can yenét the analytic solution is indeed differerdanfr
the numerical solutions and that there is alwaygraor associated with the iterative approximations
which can be quantified. In this particular examgkeidents can note that the error is only prefegnt
the position and not for the velocity, since thisuatity changes linearly with time.

B R
errory = 0.45
s errory = 1.17E-12
il = 1
vy =last( vy ) +last( ay ) =4t
yo=last( v ) +last( vy )= At
wysol = vy  +ayxt -
1 -
vsol =y G EV  REroEayRE T l
W i ey = 9,80
enory =a|:ns[ ( ) ]] % 100
vy —wysol
= =a|:us[[}__—_'_.]] % 10900

Figure 12: Comparing the analytic solution and the Euler nuca¢isolution
of the ball throw.

5. Conclusions

In this paper we have presented a strategy to eeh#ime integration of computational
modelling in the science and mathematics high dcand undergraduate university curricula, which
can display the cognitive balance existing betwieory, scientific computation and experimentation
in modern scientific and mathematical research.Nal&e argued that this approach can be based on
the creation of interactive engagement learningviies centred in exploratory and expressive
computational modelling experiments, presentedigital documents which explain the fundamental
concepts and problem solving processes using atteeatext, images and embedded movies. These
activity documents can be adopted as a whole diapgphby high school and undergraduate university



13 Enhancing Science and Mathematics Education wittm@dational Modelling

courses in science and mathematics. In additioay ttean also be useful for the professional
development of high school and university teachansi may be adapted to e-learning courses. We
have shown that Modellus can be a central systeimpéement this modelling strategy because it is
designed as a domain general environment where déqtloratory and expressive computational
modelling can be developed, taking advantage ofalh@ving important cognitive features:

1) It is possible to create mathematical modelsgustandard mathematical notation.

2) It is possible to create animations with intékecobjects whose mathematical properties
are visibly expressed in the model.

3) It is possible to make a simultaneous explonatdd multiple representations, namely,
images, tables, graphs and animations.

4) It is possible to compute and display matherahticantities obtained from the analysis of
images and graphs.

As concrete illustrative examples relevant for gméion in both physics and mathematics
high school and early undergraduate curricula, esehdiscussed a set of computational modelling
activities associated to the general physics courseoffered in 2008 and 2009 to the first year
biomedical engineering students enrolled in theufpoof Sciences and Technology of the New
Lisbon University (Neves, Silva & Teodoro, 2008020and 2010). With these examples, we showed
that the computational modelling activities with d&dlus can be created to emphasise cognitive
conflicts in the understanding of scientific andthematical concepts, the manipulation of multiple
representations of mathematical models and thepiatebetween analytical and numerical solutions.

In the field tests with the biomedical engineeristgidents, the computational modelling
activities with Modellus showed ability to identind resolve many student difficulties in important
physical and mathematical concepts of the gendrgsips course. Crucial to achieve this was the
possibility to have a real time visible correspamte between the animations with interactive objects
and the object’s mathematical properties definetheén model as well as the possibility to analyse
simultaneously several different representatiortsidé&hts were also able to work as authors of
mathematical and physics models and their assdcaatienations, not as simple browsers of computer
simulations. In addition, students solved modelshvfirst order ordinary differential equations
applying simple numerical methods and understantlirgconceptual and operational differences
existing between numerical solutions and analytsm@lutions. This is a strong indication that our
approach is helpful to improve the learning proce$smathematical models in science and
mathematics education and it is supported by thdesit answers to the questionnaires given at the
end of the courses (Neves, Silva & Teodoro, 200802 Indeed, globally, students reacted positively
to the interactive computational modelling actadtiwith Modellus, considering them to be important
in the context of the biomedical engineering mafgtudents showed a clear preference to work in
teams in an interactive engagement learning enwiem, if professors give adequate guidance and
support. The computational activities with Modellpsesented in digital PDF documents with
embedded video guidance were also considered tatdresting and well designed. Finally, students
found that Modellus was easy to learn and usendiie
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