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Abstract

The accurate software cost prediction is a research topic that has attracted much of the interest of the software engineering community
during the latest decades. A large part of the research efforts involves the development of statistical models based on historical data. Since
there are a lot of models that can be fitted to certain data, a crucial issue is the selection of the most efficient prediction model. Most often
this selection is based on comparisons of various accuracy measures that are functions of the model’s relative errors. However, the usual
practice is to consider as the most accurate prediction model the one providing the best accuracy measure without testing if this supe-
riority is in fact statistically significant. This policy can lead to unstable and erroneous conclusions since a small change in the data is able
to turn over the best model selection. On the other hand, the accuracy measures used in practice are statistics with unknown probability
distributions, making the testing of any hypothesis, by the traditional parametric methods, problematic. In this paper, the use of statis-
tical simulation tools is proposed in order to test the significance of the difference between the accuracy of two prediction methods:
regression and estimation by analogy. The statistical simulation procedures involve permutation tests and bootstrap techniques for
the construction of confidence intervals for the difference of measures. Four known datasets are used for experimentation in order to
validate the results and make comparisons between the simulation methods and the traditional parametric and non-parametric
procedures.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most important phases in planning, schedul-
ing and risk management of projects that has attracted the
interest of many researchers during the recent decades, is
software cost estimation. A lot of methods have been pro-
posed in the literature for accurate predictions of the cost.
A large part of the ongoing research concerns mathemati-
cal models that are developed based on historical data of
complete projects.

Although there is a need to know which of the models is
the best there seems to be no global answer for all kinds of
data. Indeed, the model fitting and predictive accuracy are
known to depend on the kind of data we use (types and
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number of project attributes, sample size, measurement
accuracy, etc.). This fact can be concluded by the large
number of comparative studies with controversial results
appeared in the literature so far. The situation becomes
much more complicated when we consider that each gen-
eric method can be applied under a large number of alter-
native variations. As an example we can consider
regression analysis where a simple transformation of a var-
iable can result to a significantly better model.

Having defined the dataset on which models will be based,
it is crucial to decide what criterion will be used for the choice
of the best model. A lot of accuracy measures have been pro-
posed in the literature and used in practice so far and all of
them are functions of the predictive error, measured by
appropriate methods on the projects of the available dataset.
However, a single measure is just a statistic, i.e. a value com-
puted from a sample (usually mean, median or percentage of
errors or relative errors) and as such contains significant
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variability. Thus, when we compare models based solely on a
single value we take the risk to consider as a significant dif-
ference which in fact may be not so significant. A possible
implication of such a choice is that when a small amount
of data is changed, the ‘‘best’’ model may become no longer
‘‘best’’. Therefore, this policy of determining the ‘‘most accu-
rate’’ model based on a single indicator can lead to unstable
and erroneous decision-making.

From what we have already mentioned, we can see that
there is a need for a formal comparison of models on the
basis of an accuracy measure and this comparison should
involve more inferential statistical techniques, such as
hypothesis testing and confidence intervals. This formal
testing is often overlooked in favor of simplicity, but its
benefits are very important since a model that is declared
the best through such a testing can gain the confidence
for further use to other data.

In some of the most recent studies parametric and non-

parametric procedures are carried out to test the validity
of the most accurate prediction model. A parametric test
is a procedure that requires an assumption regarding the
underlying theoretical distribution of the sample and can
be used in the case of the difference of means, whereas a
non-parametric test does not depend on any distribution
assumption. A well-known parametric test suitable for
the comparisons we are interested in is the paired sample

t-test, whereas an alternative non-parametric test is the
Wilcoxon signed rank test.

Most of the research works in the literature of software
cost prediction models use validation measures based on
the magnitude of relative error (MRE). In these studies,
the results are quite contradictory and of course there is
not a global conviction about the most accurate prediction
method. Below we give a brief review of the related litera-
ture on comparison studies.

In Shepperd and Schofield (1997), nine datasets were
used to compare estimation by analogy (EbA) with regres-
sion. The comparison was based on the mean of the MRE,
called MMRE and the PREDmre (a measure counting the
percentage of MREs in a predefined interval) accuracy
measures with no statistical test and the authors concluded
that EbA outperformed regression.

In Kitchenham (1998), a procedure called forward pass
residual analysis for analyzing unbalanced datasets was
presented and the results were compared with classification
and regression trees (CART) in terms of MMRE and
PREDmre without carrying out a significance test. The
results showed the superiority of forward pass residual
analysis.

In Myrtveit and Stensrud (1999), EbA was compared
with regression models, whereas the procedure was based
on four accuracy measures computed from statistics of
MRE: mean (MMRE), median (MdMRE), standard devi-
ation (SDmre) and maximum value (MAXmre). The statis-
tical significance of the results was tested using parametric
paired t-test for the case of MMRE and non-parametric
Wilcoxon signed rank test for the case of MdMRE.
In Briand et al. (2000), several prediction methods were
compared, such as ordinary least-squares (OLS) regression,
stepwise analysis of variance (ANOVA) for unbalanced
datasets, CART, EbA and also combinations of CART
with OLS and EbA. In that study, the MdMRE accuracy
measure was used and the comparisons were made by the
Wilcoxon signed rank test. The results evidenced that
OLS and ANOVA regression models outperformed
CART, EbA and the combinations of CART with OLS
and EbA.

In Mair et al. (2000), the authors presented a compara-
tive study regarding the use of three machine learning
methods: artificial neural networks (ANNs), case-based
reasoning (CBR), rule induction (RI) and OLS. The com-
parison was based on the MMRE, MdMRE, MinMRE
and MaxMRE, whereas no statistical test was carried
out. The conclusion was that ANNs seem to be the most
accurate technique, whereas RI methods were the least
accurate.

In Shukla (2000), simulation experiments were con-
ducted for comparative performance evaluation of a top–
down strategy for the construction of a decision tree
(CARTX) and neural network (NN) predictors, trained
with back-propagation, quick-propagation and genetic
algorithm. Student’s t-test for the average prediction error
was used to establish that NN predictors trained by a
genetic algorithm were a significant improvement over
both CARTX and quick-propagation NN.

In Jeffery et al. (2001), OLS regression, stepwise
ANOVA, CART, EbA and robust regression were used
to compare company specific models with models based
on multi-company data. The comparison was carried out
for MMRE, MdMRE and PREDmre validation measures
by the Wilcoxon signed rank test. The conclusion was that
robust regression and OLS performed most accurately in
the case of multi-company data, whereas OLS, CART
and EbA performed best when using company’s own data.

In Myrtveit et al. (2005), a simulation study was pre-
sented in which regression models were compared with
EbA models and several accuracy measures (MAR,
MMRE, MMER, MBRE, MIBRE, RSD, LSD) were eval-
uated. No significance test was used for pairwise compari-
sons of the accuracy measures. The authors noted a lack of
convergence about the most accurate prediction method
and underlined three important factors about this.

Summarizing, most of the aforementioned studies use
the MRE, whereas the tests for assessing statistically signif-
icant difference between the models’ accuracy are the
paired t-test and the Wilcoxon signed rank test for the
MMRE and MdMRE measures, respectively.

The problem with the software projects cost data is that
the samples are quite small and skewed, so it is not easy to
make assumptions regarding the distribution of the predic-
tion errors resulting from a certain process or a model and
from which the accuracy measures are calculated. For such
types of data it is known from the statistical literature that a
certain class of simulation methods may be proved quite
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Global accuracy measures
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beneficial. These methods are based on resampling, i.e. on
drawing a large number of samples from the original sample
in order to ‘‘reconstruct’’ the underlying theoretical distri-
bution. It is obvious that these methods are computational
techniques requiring large number of iterations in a com-
puter. However, the rapid evolution of computer power
has contributed in the wide spread of these methods which
are nowadays used in all research areas tending to supersede
the traditional statistical procedures. They are also imple-
mented in all well-known statistical packages.

The goal of this paper is to further extend the research
regarding the comparison of models proposing alternative
tests for a wide range of accuracy measures. Two alterna-
tive methods for statistical inference, namely the bootstrap
confidence intervals and the permutation tests are applied
to test the difference between the most commonly used
accuracy measures based on errors obtained from two pre-
diction methods, the estimation by analogy and regression
analysis. We have to emphasize that it is not our purpose to
compare specific models and to find the best model, but
rather to contribute in the systematic comparison of mod-
els. So, we can summarize the contribution of the paper in
the following points:

• We use the traditional parametric and non-parametric
procedures in order to evaluate the predictive perfor-
mance of the two comparative models based on the most
known accuracy measure, the magnitude of the relative
error (MRE).

• We consider formal comparisons of alternative mea-
sures based on the magnitude of relative error to the
estimate (MER), the squared error (SQE) and the z-
ratio that have not been studied yet under statistical
tests. The outcomes are interesting as they show that
the conclusions of comparisons based on different crite-
ria can be quite different.

• We perform statistical tests for the Pred measures that
are essentially percentages and have not been considered
yet in formal comparisons.

• We present two statistical simulation techniques, the
bootstrap confidence intervals and the permutation test
for comparisons of the accuracy measures. More pre-
cisely, we use three types of bootstrap confidence inter-
vals; the t confidence interval using bootstrap standard

errors (t-CIbse), the bootstrap percentile confidence

interval (CIbp), and the bias-corrected and accelerated
confidence interval (CIbca). Furthermore, the permuta-
tion test is utilized for the comparison of accuracy mea-
sures that are based on the means, medians and
percentages.

In order to present a comprehensive study of all the
accuracy methods and the statistical tests, extensive exper-
imentation is made with four known datasets from the
literature.

In Section 2, we give the definition of all the accuracy
measures that we use in our comparisons. In Section 3,
we give an account of the traditional statistical tests that
are suitable for the accuracy measures we consider in our
study. In Section 4, we extensively present the resampling
techniques (bootstrap confidence intervals and permuta-
tion tests) that are utilized in the formal comparisons of
the two models. In Section 5, we give the results obtained
from the application to real data. Finally, in Section 6,
we present the conclusions and comments on future work.
2. Accuracy measures

The accuracy measures that are most frequently used for
validating cost models are based on the yA (actual) and the
yE (estimated from a model) cost values. Specifically, two
measures of local absolute relative error have been exten-
sively used so far: the magnitude of relative error (MRE)
(Conte et al., 1986) and the magnitude of relative error to

the estimate (MER) (Kitchenham et al., 2001) defined as

MRE ¼ jyA � yEj
yA

and MER ¼ jyA � yEj
yE

Except from these, some other alternative measures have
been proposed. The squared error (SQE) (Shan et al., 2002)
and the z-ratio (Kitchenham et al., 2001) defined as

SQE ¼ ðyA � yEÞ
2 and z ¼ yE

yA

These local measures can yield a global predictive accu-
racy measure for a model by computing a statistic from
them. The most commonly used measures are given in
Table 1.

As we can see, the derivation of these accuracy measures
is simple, either by computing the mean, the median or the



Table 2
McNemar’s 2 · 2 table results

dmreModelB

0 1

dmreModelA 0 #(negative–negative) #(negative–positive)
1 #(positive–negative) #(positive–positive)
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proportion of relative errors that are less than p, where
usually p = 0.20 or p = 0.25.

3. Traditional statistical tests for the accuracy measures

Suppose that we wish to compare two cost prediction
models (ModelA and ModelB) on the same dataset. Sup-
pose also that we obtain predictions using the well-known
method of jackknife (or hold-one-out), i.e. we estimate the
cost of each one of the projects in the dataset using a model
constructed by all the other projects. Since the cost of each
project is predicted by two alternative models, it is reason-
able to use statistical tests for two related or paired

samples.
After applying two models on the same dataset, we

obtain by the jackknife method two paired samples of
errors (MREModelA and MREModelB, MERModelA and
MERModelB, SQEModelA and SQEModelB, zModelA and
zModelB), which are values of continuous variables. Based
on these samples we have to draw conclusions concerning
their differences. For example in the case of MMRE,
MMER, MSE and Mean(z) we essentially have to perform
a test for comparing two means. The statistical significance
of the difference can be tested through parametric and non-
parametric tests.

The paired samples t-test is a parametric procedure that
compares the means of two samples. The test is performed
by computing first a new sample of size n from the differ-
ences of all pairs of the original samples and then by calcu-
lating a t statistic which is used to test whether the mean
difference is significantly different from zero. Equivalently,
the same test can be performed by computing a paired dif-

ference confidence interval (CI). For the difference of
means lD = l1 � l2 the CI is the following: From the
new sample of differences, estimates of the mean �xD, and
the standard deviation sD are calculated. Then, a
100(1 � a)% CI is obtained by the formula (Sheskin,
2004; Efron and Tibshirani, 1993):

�xD � tn�1;1�a=2

sDffiffiffi
n
p ; �xD þ tn�1;1�a=2

sDffiffiffi
n
p

� �

where tn�1;1�a/2 represents the 1 � a/2 quantile of Student’s
t distribution with n � 1 degrees of freedom. Note that the
quantity sD=

ffiffiffi
n
p

is the standard error of the mean, i.e. the
standard deviation of �xD. In general, the standard error
of any statistic is very important for the computation of
its CIs. The paired t-test and the corresponding CI can
be used to compare MMRE, MMER, MSE and Mean(z)
of two models.

A strong assumption of the t-test is that the difference of
the samples (difference of MREs, MERs, SQEs and z-val-
ues) follows a normal or nearly normal distribution. How-
ever, there is no theoretical evidence that samples of errors
obtained by any model are normally distributed. Further-
more, practice showed that very often in real data the dis-
tribution of errors is highly skewed, very often with
outliers.
A non-parametric analogue of the paired t-test is the
Wilcoxon signed rank test which tests whether there is a sig-
nificant difference between the medians of two paired sam-
ples. The test is based on ranks of the sample values, so
there is no need for assumptions regarding their distribu-
tions. The test is also robust in the sense that it is not
affected by the presence of outliers. So, by definition the
Wilcoxon test can be used to compare MdMRE, MdMER
and Median(z) of two models.

Regarding the PREDmre(100p) and PREDmer(100p)
accuracy measures, we can use the non-parametric McNe-
mar procedure that tests for changes in responses using the
chi-square distribution and can be applied for comparing
two paired dichotomous samples. In our case, a dichoto-
mous variable can be constructed for the MREs (or simi-
larly for MERs) of a model, by the following rule:

dmreModel ¼
1; if MREModel 6 p

0; if MREModel > p

�

Therefore, the test is suitable for Pred measures which are
simply the proportion of units in each sample. The McNe-
mar test is based on the construction of a 2 · 2 contingency
table (Table 2) where the values of the two dichotomous
variables (one for each model) are cross-tabulated.

An interesting characteristic of this table is that there are
two concordant cells in which the paired results are the
same (both negative or both positive) and two discordant
cells in which the paired results are different for the same
project’s MRE (positive–negative or negative–positive).
The McNemar test utilizes only the information in the dis-
cordant cells in order to analyze whether the two models
show equivalent results. The null hypothesis is that the pro-
portions of positive results are the same for both prediction
models and is retained if the discordant pairs are distrib-
uted uniformly in the two discordant cells.

Detailed description of all these tests can be found in
any statistical textbook, see for example (Sheskin, 2004).

An important remark that we have to take into account
for software cost datasets is that most often the samples are
quite small. For small datasets from unknown underlying
distributions, resampling techniques have been developed
and these will be described next.

4. Resampling techniques

There is a large number of resampling techniques devel-
oped for quite different purposes. However, in our study,
in order to compare the errors of two models we use two
of the most popular resampling techniques: bootstrap



Table 3
Descriptive statistics for local measures of error

MREEbA (%) MREOLS (%) MEREbA (%) MEROLS (%) SQEEbA SQEOLS zEbA zOLS

Mean 39.86 24.68 32.95 27.09 9772.64 10958.16 1.077 1.050
Median 22.44 21.23 26.10 21.67 – – 0.841 1.028
Hit rate (100p 6 25%) 57.14 57.14 47.62 61.90 – – – –

Table 4
Significance of all paired samples tests for the global accuracy measures

Paired
t-test

Wilcoxon signed
rank test

McNemar
test

MMRE 0.135 – –
MdMRE – 0.203 –
PREDmre(25) – – 1
MMER 0.493 – –
MdMER – 0.191 –
PREDmer(25) – – 0.508
MSE 0.808 – –
Mean(z) 0.817 – –
Median(z) – 0.759 –
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confidence intervals and permutation tests. These will be
used for testing the difference of means, medians and per-
centages of the errors between two models.

The main idea behind testing the significance of a differ-
ence is to test essentially whether the observed difference
could reasonably occur ‘‘just by chance’’ due to the ran-
dom sample used for developing the model. If this is not
the case, we can infer that we have evidence for a signifi-
cant difference (Sheskin, 2004).

Traditional methods use some statistics computed from
the sample which is assumed to follow a theoretical distri-
bution. In case the difference in the sample falls outside a
range of critical values, the difference is considered signifi-
cant. On the other hand, in the resampling procedures
these critical values are computed by drawing repetitive
samples from the original sample.

4.1. Bootstrap confidence intervals

Bootstrap is a computer-based simulation technique
that can be used in order to extract and explore the sample
mre.dif
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Fig. 1. (a) Density and (b) bootstrap estim
distribution of a statistic (Efron and Tibshirani, 1993). We
will only describe the non-parametric bootstrap method
which makes no assumptions of theoretical distributions.
The rationale behind non-parametric bootstrap procedure
is the generation of a large number of independent samples
drawn with replacement from the original sample.

In general, the problem is to use a random sample
x = (x1, . . . ,xn) for statistical inference about an unknown
population parameter h (such as mean, median, percent-
age, variance, etc.). The sample statistic ĥ is a point
estimator of the parameter h. Three basic steps are
followed:

1. Obtain a large number of samples B, each one by the fol-
lowing procedure: from the set {1,2, . . . ,n} draw ran-
domly with replacement a set of indices {j1, . . . , jn} and
form the ith sample x�i ¼ ðxj1

; . . . ; xjn
Þ of size n, where

i = 1,2, . . . ,B.
2. From each bootstrap sample x*i, compute h*i (i =

1,2, . . . ,B), the value of the statistic under consideration.
3. The B values of the bootstrap statistics h*i form an

approximation of the sampling distribution of ĥ.

The approximate distribution obtained by the bootstrap
method can be used for computing CIs for the population
parameter h. In practice, the bootstrap CIs are particularly
useful when the data are skewed and the samples are quite
small, as the software cost data usually are.

In our case the unknown population parameter is con-
sidered to be the difference of means, medians or percent-
ages between two paired distributions of errors obtained
by two different cost models. The point therefore is to test
whether a CI for the difference of means, medians or per-
centages contains the zero value. In such a case we cannot
support the existence of significant difference. Next, we
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describe some methods for computing bootstrap confi-
dence intervals (Venables and Ripley, 2002).
M
M

E
R

M
S

E
M

ea
n

(z
)

90
%

95
%

90
%

95
%

90
%

95
%

5)
(�

0.
08

6,
0.

20
4)

(�
0.

11
7,

0.
23

4)
(�

94
85

.5
,7

11
4.

5)
(�

11
22

4.
0,

88
52

.9
)

(�
0.

12
0,

0.
25

2)
(�

0.
14

4,
9)

(�
0.

08
7,

0.
20

4)
(�

0.
11

9,
0.

23
5)

(�
91

55
.7

,6
78

4.
6)

(�
10

82
8.

1,
84

57
.0

)
(�

0.
15

8,
0.

21
1)

(�
0.

19
7,

6)
(�

0.
08

0,
0.

19
9)

(�
0.

11
3,

0.
22

0)
(�

96
16

.7
,5

75
2.

1)
(�

10
63

4.
0,

68
53

.5
)

(�
0.

13
9,

0.
21

0)
(�

0.
16

5,
2)

(�
0.

11
9,

0.
17

6)
(�

0.
15

1,
0.

19
5)

(�
99

92
.9

,5
40

9.
8)

(�
10

99
9.

0,
63

92
.7

)
(�

0.
12

1,
0.

25
2)

(�
0.

14
1,
4.1.1. t CI using bootstrap standard errors (t-CIbse)
This approach can be applied when the bootstrap distri-

bution of the ĥ statistic shows a normal shape. First, the
standard error of the statistic is estimated as the standard
deviation of all the h*i values (i = 1,2, . . . ,B) obtained from
the bootstrap samples. This is denoted by ŝeboot and mea-
sures how much the statistic varies under random resam-
pling. Then, the bootstrap t-CI is obtained by the
following expression:

ĥ� tn�1;1�a=2 � ŝeboot; ĥþ tn�1;1�a=2 � ŝeboot

h i
There is a limitation in the usage of this type of CI: these

intervals are accurate only when the bootstrap distribution
is approximately normal and has small bias.

4.1.2. Bootstrap percentile CI (CIbp)

This method is applied when the bootstrap distribution
of the ĥ statistic is non-normal, highly skewed and there are
outliers. First, from the empirical distribution containing
all the h*i values (i = 1,2, . . . ,B) obtained from the boot-
strap samples, we compute the values h�a=2 and h�1�a=2 corre-
sponding to the 100(a/2)th and the 100(1 � a)th
percentiles. Then, the CIbp is simply given by

h�a=2; h�1�a=2

h i
A reasonable question arising from the two types of

bootstrap CI is under which conditions it is safe to use
the aforementioned methods. The answer is not so straight-
forward and the recommendation of the statisticians is to
inspect whether these intervals are reasonably close by
comparing them with each other (Moore et al., 2003). If
the bootstrap distribution is close to normal, the t-CIbse
and the CIbp bounds will be quite close. On the other
hand, if there is a large divergence, neither type of the
above intervals should be used.
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4.1.3. Bias-corrected and accelerated confidence interval

(CIbca)

This is a method attempting to shift and scale the per-
centile intervals for cases where there is a large divergence
between t-CIbse and CIbp. This happens in cases of skew-
ness (Moore et al., 2003). The method is also based on the
percentiles of the bootstrap distribution but their computa-
tion depends on two numbers â and ẑ0, which make the
appropriate adjustments in order to correct bias and skew-
ness. The value â is called acceleration because it refers to
the rate of change of the standard error of ĥ with respect
to the true parameter value h and the value ẑ0 is the correc-
tion of bias. These values are computed from the original
sample and the bootstrap samples by the following
expressions:



Table 6
Confidence intervals for the difference of medians

CI MdMRE MdMER Median(z)

90% 95% 90% 95% 90% 95%

CIbp (�0.113,0.174) (�0.131,0.175) (�0.046, 0.207) (�0.066,0.229) (�0.282, �0.065) (�0.300, �0.013)

Table 7
Confidence intervals for the difference of percentages

CI PREDmre(25) PREDmer(25)

90% 95% 90% 95%

Student’s t-CI (�0.244,0.244) (�0.289,0.289) (�0.365,0.088) (�0.406,0.132)
t-CIbse (�0.258,0.259) (�0.313,0.313) (�0.375, 0.089) (�0.424,0.138)
CIbp (�0.238,0.238) (�0.286,0.286) (�0.381, 0.048) (�0.429,0.095)
CIbca (�0.238,0.238) (�0.286,0.286) (�0.381, 0.062) (�0.381,0.143)

Table 8
Significance of all paired samples permutation tests for the global accuracy
measures

Permutation test

MMRE 0.098
MdMRE 0.856
PREDmre(25) 1
MMER 0.534
MdMER 0.364
PREDmer(25) 0.504
MSE 0.842
Mean(z) 0.824
Median(z) 0.066

Table 9
General results for the Abran and Robillard dataset

Statistical test Rejection of null
hypothesis

MRE MER SQE z

Paired t-test for the difference of means No No No No
90% t-CIbse for the difference of means No No No No
90% CIbp for the difference of means Yes No No No
90% CIbca for the difference of means Yes No No No
Permutation test for the difference of means Yes No No No
Wilcoxon test for the difference of medians No No – No
90% CIbp for the difference of medians No No – Yes
Permutation test for the difference of

medians
No No – Yes

McNemar test for the difference of
percentages

No No – –

90% t-CIbse for the difference of percentages No No – –
90% CIbp for the difference of percentages No No – –
90% CIbca for the difference of percentages No No – –
Permutation test for the difference of

percentages
No No – –

622 N. Mittas, L. Angelis / The Journal of Systems and Software 81 (2008) 616–632
ẑ0 ¼ U�1 #ðh�i < ĥÞ
B

 !
and

â ¼
Pn

i¼1 ĥðJÞ � ĥð�iÞ
� �3

6
Pn

i¼1 ĥðJÞ � ĥð�iÞ
� �2

� �3=2

where # means ‘‘number of’’, U�1(Æ) denotes the inverse of
the standard normal cumulative distribution function, ĥð�iÞ

is the value of the statistic using the sample with the ith
data point removed (the ith jackknife sample) and

ĥðJÞ ¼ 1

n

Xn

i¼1

ĥð�iÞ

The 100(1 � a)% CIbca confidence interval is then given by

ĥ�a1
; ĥ�a2

h i
where

a1 ¼ U ẑ0 þ
ẑ0 þ za=2

1� âðẑ0 þ za=2Þ

	 

and

a2 ¼ U ẑ0 þ
ẑ0 þ z1�a=2

1� âðẑ0 þ z1�a=2Þ

	 


In the above expressions, U(Æ) denotes the standard normal
cumulative distribution function and za/2 is the 100a/2th
percentile of a standard normal distribution. Setting z0

and a equal to zero, the CIbca is the same as the percentile
interval. For more details on the CIbca see (Efron and Tib-
shirani, 1993). The CIbca method is recommended for gen-
eral use, especially for non-parametric problems or when
high accuracy is required.

4.2. Permutation tests

Permutation tests (Efron and Tibshirani, 1993), are
resampling techniques based on rearrangements of the
data. For the case of paired-samples comparisons, the
samples are in the form (x1,y1), . . . , (xn,yn). The method
generates a large number of paired samples where each pair
(xi,yi) is permuted randomly. The statistic under consider-
ation is computed for each generated paired sample and its
sampling distribution is used for testing any hypothesis.
The main difference between permutation tests and boot-
strap is the way the resampling procedure is performed,



Table 10
Descriptive statistics for local measures of error

MREEbA (%) MREOLS (%) MEREbA (%) MEROLS (%) SQEEbA SQEOLS zEbA zOLS

Mean 82.07 27.61 49.06 31.86 75.693 195.326 1.503 1.043
Median 29.49 25.03 31.99 20.19 – – 0.976 1.028
Hit rate (100p 6 25%) 41.67 50.00 45.83 54.17 – – – –

Table 11
Significance of all paired samples tests for the global accuracy measures

Paired
t-test

Wilcoxon signed
rank test

McNemar
test

MMRE 0.196 – –
MdMRE – 0.136 –
PREDmre(25) – – 0.754
MMER 0.234 – –
MdMER – 0.128 –
PREDmer(25) – – 0.754
MSE 0.475 – –
Mean(z) 0.284 – –
Median(z) – 0.684 –

N. Mittas, L. Angelis / The Journal of Systems and Software 81 (2008) 616–632 623
i.e. permutation tests draw samples without replacement in
contrast to what the bootstrap does.

In our comparisons the paired samples consist of the
local measures of error (MRE, MER, SQE or z) obtained
by two cost models. Permutation tests are applied to test
the significance of difference between means, medians or
percentages. A typical permutation test involves the follow-
ing steps:

1. The paired data are randomly permuted as we already
described.
mre.dif
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Fig. 2. (a–c) Density and (b–d) bootstrap estimat
2. The difference of the statistic under consideration (for
example the difference of means or medians between
MREModelA and MREModelB) is computed.

3. Steps 1 and 2 are repeated a large number of times (say
B).

4. The statistic from the original sample (for example
MMREModelA �MMREModelB) is computed and is
located in the sampling distribution of all values
obtained from Steps 1–3 in order to estimate the signif-
icance of the hypothesis (p-value). Note that the null
hypothesis in our case is that any difference is equal to
zero.

Permutation tests are used when the t-test fails to give
accurate results in situations where the normality assump-
tion is not valid.

4.3. The comparative prediction models

Two cost prediction methods were compared: EbA and
OLS. Each model’s prediction accuracy was evaluated
through the jackknife procedure which estimates the cost
of each project from all the others.
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EbA was used to predict the cost of each project in a
dataset by finding the closest projects after some calibra-
tion regarding the distance metric, number of closest neigh-
bours, standardization, and statistic for estimation (Angelis
and Stamelos, 2000) in order to optimize as much as possi-
ble its predictive power.

OLS regression explains the relation between several
independent variables (cost factors) and a dependent vari-
able (effort or productivity) in the form of a linear relation-
ship. Since the variables are usually non-normally
distributed, they need some transformation in order to
obtain a valid linear model. The most usual transforma-
tions are the logarithmic and the square root (in cases of
zero values). In order to handle mixed data with categorical
and continuous variables, we used the general linear model

method that combines regression analysis and analysis of
variance.

5. Application to real data

In this section we give the results of the comparisons
described earlier as applied to four datasets from the liter-
ature. The results from the resampling methods are pre-
sented in tables along with results from the traditional
tests.

5.1. The Abran–Robillard dataset

The first dataset contains 21 projects (Abran and Robil-
lard, 1996) from a major Canadian financial organization
with 10 independent continuous attributes and a dependent
continuous variable (actual effort days). After applying the
two prediction methods (OLS and EbA), we computed by
jackknife the local measures of error for which we obtained
the basic statistics. These are given in Table 3.

From the statistics of Table 3, we can see that the mea-
sures MMRE, MMER, MdMRE and MdMER are lower
for the OLS model. The Mean(z) is closer to one for the
OLS, whereas the opposite is true for the case of the Med-
ian(z). The PREDmre(25) is the same for the two models,
whereas the PREDmer(25) is higher for the OLS model.
On the other hand, the MSE is lower for the EbA.

5.1.1. Parametric and non-parametric paired samples tests

The obvious question arising from the previous global
measures is whether we can distinguish the ‘‘best’’ model.
The accuracy measures give contradictory results. The
OLS outperforms the EbA for the six out of nine measures,
whereas the EbA outperforms OLS for two accuracy mea-
sures. None of the models gives better results for the
PREDmre(25). However, these statistics cannot be used
on their own, in order to select the best model.

The paired t-test (Table 4) focuses on the means of the
paired local errors of the two models and reports the signif-
icance of their difference. This procedure is utilized for the
comparison of MMRE, MMER, MSE and Mean(z) accu-
racy measures. Since the significance value (or p-value) is



Table 14
Confidence intervals for the difference of percentages

CI PREDmre(25) PREDmer(25)

90% 95% 90% 95%

Student’s t-CI (�0.294,0.132) (�0.333,0.172) (�0.294,0.132) (�0.333,0.172)
t-CIbse (�0.316,0.149) (�0.364,0.197) (�0.311,0.145) (�0.359,0.192)
CIbp (�0.292,0.167) (�0.333,0.208) (�0.292,0.125) (�0.333, 0.167)
CIbca (�0.292,0.167) (�0.333,0.208) (�0.333,0.125) (�0.365, 0.167)

Table 13
Confidence intervals for the difference of medians

CI MdMRE MdMER Median(z)

90% 95% 90% 95% 90% 95%

CIbp (�0.098,0.215) (�0.121,0.275) (�0.038,0.249) (�0.059, 0.283) (�0.230,0.157) (�0.266,0.208)

Table 15
Significance of all paired samples permutation tests for the global accuracy
measures

Permutation test

MMRE 0.066
MdMRE 0.676
PREDmre(25) 0.770
MMER 0.224
MdMER 0.174
PREDmer(25) 0.724
MSE 0.826
Mean(z) 0.316
Median(z) 0.748
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always greater than 0.10, we cannot conclude that the OLS
performs significantly better than the EbA.

Likewise, the high p-values of the Wilcoxon tests for the
MdMRE, MdMER and Median(z), cannot support exis-
tence of significant difference between the two comparative
models.

Since the number of predictions that satisfy the rule
MRE 6 25% is the same for the two models, the p-value
of the McNemar test is 1.

Summarizing our findings, none of the traditional para-
metric and non-parametric tests reveals a statistically sig-
nificant difference for the two comparative models.
Despite the fact that the accuracy measures show a differ-
ence for eight out of nine cases, the traditional tests do
not confirm these findings, so one could infer that the
two comparative models have more or less identical predic-
tive power.
5.1.2. Bootstrap confidence intervals

From Table 4, we cannot support any significant differ-
ence for the MMRE between the analogy and the regres-
sion models. On the other hand, the variable MREdif is
right-skewed and does not seem to be normal (Fig. 1a).
For these reasons, the results of t-test might be inaccurate
and so an alternative technique needs to be used for the
comparison of the two models. The bootstrap resampling
offers such an option.

After drawing the bootstrap samples we can compute
the corresponding confidence intervals using the equations
of Section 4.1. From Table 5, we can infer that only the
90% CIbp and the 95% and 90% CIbca show significant
difference between the means since they do not contain
the zero. However, the CIbca is probably the most appro-
priate technique for our data since the bootstrap distribu-
tion of the variable MREdif has considerable skewness
(Fig. 1b).

The conclusion is that although we have observed some
superiority of OLS from the MMRE measure, the t-test
could not detect a real statistically significant difference.
Instead, the CIbca method provided some evidence for this
difference.

Another interesting issue is arisen from the construction
of the 90% and 95% CIbp for the difference of the Med-
ian(z) accuracy measures (Table 6). Despite the fact that
the p-value of the Wilcoxon test is greater than 0.10
(0.759), both the 90% and 95% confidence intervals do
not contain the zero and we can infer that there is a signif-
icant difference. Having in mind that the Median(z) is
closer to one for the EbA, we can infer some superiority
of EbA compared to the OLS model.

Table 7 shows that since all the confidence intervals con-
tain the zero, there is no significant difference between the
PREDmre(25) and PREDmer(25) measures.
5.1.3. Permutation tests

Both the 90% and 95% CIbca and CIbp confidence
intervals reveal that there is a significant difference between
the two comparative models for the cases of the MMRE
and Median(z), respectively. Permutation test is an alterna-
tive method to assess whether the difference between two
means or medians could reasonably occur just by chance
in a random sample. The results of the permutation tests
for the accuracy measures are presented in Table 8.



Table 16
General results for the Albrecht dataset

Statistical test Rejection of null
hypothesis

MRE MER SQE z

Paired t-test for the difference of means No No No No
90% t-CIbse for the difference of means No No No No
90% CIbp for the difference of means Yes No No No
90% CIbca for the difference of means Yes No No Yes
Permutation test for the difference of means Yes No No No
Wilcoxon test for the difference of medians No No – No
90% CIbp for the difference of medians No No – No
Permutation test for the difference of

medians
No No – No

McNemar test for the difference of
percentages

No No – –

90% t-CIbse for the difference of percentages No No – –
90% CIbp for the difference of percentages No No – –
90% CIbca for the difference of percentages No No – –
Permutation test for the difference of

percentages
No No – –

Table 18
Significance of all paired samples tests for the global accuracy measures

Paired
t-test

Wilcoxon signed
rank test

McNemar test

MMRE 0.007 – –
MdMRE – 0.010 –
PREDmre(25) – – 0.035
MMER 0.390 – –
MdMER – 0.118 –
PREDmer(25) – – 0.170
MSE 0.129 – –
Mean(z) 0.013 – –
Median(z) – 0.067 –

Table 19
McNemar’s 2 · 2 table results for the PREDmre(25)

Regression

0 1

Analogy 0 29 17
(46.8%) (27.4%)

1 6 10
(9.7%) (16.1%)
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As far as the MMRE concerns, we could reject the null
hypothesis of no difference between the two comparative
models at the 0.10 level (p = 0.098). Furthermore, the p-
value of the permutation test for the case of the Median(z)
accuracy measure is lower than 0.10 (0.066) and we can
also infer a significant difference. These findings are consis-
tent with the results obtained from the bootstrap confi-
dence intervals.
5.1.4. General results

The general results (Table 9) that are extracted from
our statistical analysis is that the OLS has an improved
performance compared with the EbA model in terms of
MMRE, whereas the opposite is the case for the Med-
ian(z). The traditional parametric and non-parametric
tests do not statistically signify these findings. On the
other hand, the more robust resampling techniques verify
the significant divergence of the measures for the two
comparative models. As far as the MMER concerns, the
paired t-test, the accurate CIbca confidence intervals,
and the permutation tests for the difference of means do
not signify statistically different results. Hence, the small
divergence of the percentages of the accuracy measures
could occur just by chance. This is also the case for the
accuracy measures that are based on the SQE. Further-
more, the parametric paired t-test, the bootstrap confi-
dence intervals and the permutation test do not signify a
difference for the means of the z.
Table 17
Descriptive statistics for local measures of error

MREEbA (%) MREOLS (%) MEREbA (%

Mean 88.51 47.73 60.10
Median 49.27 27.84 53.75
Hit rate (100p 6 25%) 25.81 43.55 30.65
5.2. The Albrecht dataset

The Albrecht dataset contains 24 software projects
(Albrecht and Gaffney, 1983) with six independent contin-
uous variables and a dependent continuous variable (actual
effort man months). The aforementioned analysis was
applied again and the basic statistics are presented in Table
10.

The global accuracy measures are clearly better for the
OLS except from the cases of the MSE and Median(z) in
which the EbA seems to outperform the OLS.
5.2.1. Parametric and non-parametric paired samples tests

All the p-values of the parametric and non-parametric
procedures (Table 11) are greater than 0.10 and we cannot
reject the null hypothesis of no difference between the sta-
tistics under consideration. The conclusion from these tests
is that the OLS and EbA give similar predictions.
5.2.2. Bootstrap confidence intervals

Despite the major difference (54.46%) between the
MMRE measures, the paired t-test does not signify a sta-
tistically difference between the two comparative models.
However, the distribution is highly skewed at the right
) MEROLS (%) SQEEbA SQEOLS zEbA zOLS

51.73 73,999,948 20,377,643 1.546 1.155
31.62 – – 1.038 1.070
43.55 – – – –
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(Fig. 2a) and the paired t-test is not suitable for the
comparison of the means. This is also the case for the
Mean(z) (Fig. 2c). Under these circumstances, it is prefer-
able to conduct a hypothesis test for the difference of
means through the construction of bootstrap confidence
intervals.

Due to the fact that the skewness still remains in the
bootstrap distributions of the variables MREdif and zdif

(Fig. 2b and d), the t-CIbse are not considered accurate
enough. On the other hand, the bootstrap confidence
intervals that are based on the percentiles of the boot-
strap distribution give more robust results. The zero value
is not contained, either in the 90% or in the 95%
confidence intervals for both of the CIbp and CIbca tech-
niques (Table 12). Furthermore, the 90% CIbca confi-
dence interval does not contain the zero for the case of
the Mean(z).

Observing the contradictory results between the paired
t-test and the bootstrap confidence intervals, it is clear that
there is a need for a further investigation for the cases of
the MMRE and Mean(z).

Tables 13 and 14 show that since all the confidence inter-
vals contain the zero, there is no significant difference
between the measures that are based on medians and per-
centages, respectively.

5.2.3. Permutation tests

The p-value of the permutation test for the difference of
MMREs is 0.066 (Table 15) and we can reject the null
hypothesis of no difference between the two comparative
models at the 0.10 level. Therefore, we can see here that
the results of both resampling techniques are in accordance
and support a significant difference between the two mod-
els, which was not revealed by the t-test.

On the other hand, the p-value of the permutation test
for the difference of Mean(z) (0.316) agrees with the
paired t-test’s result. In this case, we have to rely only
on the 90% CIbca in order to claim that there is a
difference.

5.2.4. General results

The general result (Table 16) that is extracted from our
statistical analysis is that the OLS has an improved perfor-
mance compared with that of the EbA for the case of the
MMRE. The paired t-test could not detect the superiority
of the OLS due to the skewness of the distribution. The
more robust resampling techniques statistically verify the
large divergence of the means for the two comparative
models.

On the other hand, the 90% CIbca for the case of the dif-
ference of Mean(z) signifies also an improved performance
of the OLS, but this outcome is not verified either by the
paired t-test or by the permutation test.

For the rest global accuracy measures, both the tradi-
tional and resampling techniques agree and so we can
infer that the two alternative models give similar
predictions.



Table 21
Confidence intervals for the difference of medians

CI MdMRE MdMER Median(z)

90% 95% 90% 95% 90% 95%

CIbp (0.024,0.330) (�0.012,0.362) (0.089,0.337) (0.064, 0.360) (�0.109,0.202) (�0.137,0.226)

Table 22
Confidence intervals for the difference of percentages

CI PREDmre(25) PREDmer(25)

90% 95% 90% 95%

Student’s t-CI (�0.302, �0.053) (�0.327, �0.028) (�0.265,0.007) (�0.292,0.033)
t-CIbse (�0.303, �0.051) (�0.328, �0.027) (�0.265,0.007) (�0.292,0.034)
CIbp (�0.307, �0.048) (�0.323, �0.032) (�0.258,0.000) (�0.290,0.032)
CIbca (�0.307, �0.048) (�0.325, �0.032) (�0.258,0.000) (�0.290,0.032)

Table 23
Significance of all paired samples permutation tests for the global accuracy
measures

Permutation test

MMRE 0.004
MdMRE 0.088
PREDmre(25) 0.036
MMER 0.402
MdMER 0.026
PREDmer(25) 0.156
MSE 0.006
Mean(z) 0.006
Median(z) 0.692
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5.3. The Finnish dataset

The third dataset contains 62 projects from a commer-
cial Finnish bank (Maxwell, 2002). In our analysis, we used
the same concatenated categorical variables as Sentas et al.
(2005), with few categories, instead of the original vari-
ables. There are 24 independent variables (3 continuous,
16 ordinal and 5 nominal) and the dependent variable is
the actual effort hours. Since most of the predictor vari-
ables were categorical, we built a regression-ANOVA
model.

Concerning the analogy model, there are certain dis-
tance metrics that are used when the variables in the data-
set are not all of the same type. For the Finnish dataset we
used the daisy function available in the statistical software
SPLUS (Insightful Corporation, 2001).

From the statistics of Table 17, it is clear that all the
measures except from the Median(z) are better for the
OLS.
5.3.1. Parametric and non-parametric paired samples tests
The parametric paired t-test (Table 18) signifies a differ-

ence for the cases of the MMRE and Mean(z). The Wilco-
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Analyzing the McNemar’s 2 · 2 table (Table 19), we can
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Table 24
General results for the Finnish dataset

Statistical test Rejection of null
hypothesis

MRE MER SQE z

Paired t-test for the difference of means Yes No No Yes
90% t-CIbse for the difference of means Yes No No Yes
90% CIbp for the difference of means Yes No Yes Yes
90% CIbca for the difference of means Yes No Yes Yes
Permutation test for the difference of means Yes No Yes Yes
Wilcoxon test for the difference of medians Yes No – Yes
90% CIbp for the difference of medians Yes Yes – No
Permutation test for the difference of

medians
Yes Yes – No

McNemar test for the difference of
percentages

Yes No – –

90% t-CIbse for the difference of percentages Yes No – –
90% CIbp for the difference of percentages Yes No – –
90% CIbca for the difference of percentages Yes No – –
Permutation test for the difference of

percentages
Yes No – –

Table 26
Significance of all paired samples tests for the global accuracy measures

Paired
t-test

Wilcoxon signed
rank test

McNemar test

MMRE 0.143 – –
MdMRE – 0.043 –
PREDmre(25) – – 1
MMER 0.434 – –
MdMER – 0.418 –
PREDmer(25) – – 1
MSE 0.145 – –
Mean(z) 0.041 – –
Median(z) – 0.003 –
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Having in mind the large divergence of the global accu-
racy measures, we can infer that the OLS gives more accu-
rate predictions as the traditional procedures can detect
statistically significant different results for four out of nine
tests. On the other hand, the EbA outperforms the OLS
(p = 0.067) for the case of the Median(z). The resampling
techniques should be utilized in order to confirm the afore-
mentioned findings. Furthermore, they might also reveal
some other differences that the traditional tests could not
detect due to the potential skewness of the data.

5.3.2. Bootstrap confidence intervals

Tables 20–22 show that the bootstrap confidence inter-
vals for MMRE, MdMRE, PREDmre(25) and Mean(z)
give the same results with the corresponding parametric
and non-parametric tests and verify that the OLS gives
more accurate predictions.

Moreover, in three cases the results of traditional tests
are not consistent with the bootstrap confidence intervals.
Specifically:

• The 90% and 95% CIbp in Table 21 do not contain the
zero, so we assess a significant difference between the
medians of MER for the two comparative models.

• Both the 90% and 95% CIbp and CIbca in Table 20 do
not contain the zero, so we can reject the null hypothesis
of no difference between the OLS and the EbA for the
MSE. This is probably due to the high skewness of the
Table 25
Descriptive statistics for local measures of error

MREEbA (%) MREOLS (%) MEREbA (

Mean 71.85 56.02 77.76
Median 59.08 40.62 46.60
Hit rate (100p 6 25%) 27.45 27.45 25.49
SQEdif (Fig. 3a). Since, the skewness still remains in
the bootstrap distribution of the SQEdif (Fig. 3b) the
CIbca can be considered more accurate.

• The 90% and 95% CIbp (Table 21) contain the zero for
the Median(z), showing no significant difference.
5.3.3. Permutation tests
The p-value of the permutation test for the difference of

the medians of MER is 0.026 (Table 23). This result is con-
sistent with the bootstrap confidence intervals. On the
other hand, the Wilcoxon test could not detect the differ-
ence between the medians. Observing the large divergence
of the MdMER values, the p-value of the Wilcoxon test
(0.118) which is close to the rejection area (0.10) and the
findings of the resampling techniques that reveal a signifi-
cant difference, we can claim that the OLS seems to give
more accurate predictions.

The p-value of the permutation test is lower than 0.05
for the MSE and verifies the result of CIbp and CIbca. This
difference was not revealed by the paired t-test procedure.

Furthermore, the p-value of the permutation test for the
difference of the Median(z) is 0.692 so we cannot reject the
null hypothesis of no difference. Summarizing our findings
for the Median(z), we can notice that only the Wilcoxon
test signifies a difference between the medians, a result
which is not supported by the resampling methods.
5.3.4. General results

From Table 24, we can observe that both the tradi-
tional and the resampling techniques show that the OLS
outperforms the EbA model for MMRE, MdMRE,
PREDmre(25) and Mean(z). Moreover, the superiority of
the OLS can only be detected by the resampling techniques
for the MdMER and MSE. On the other hand, the Wilco-
%) MEROLS (%) SQEEbA SQEOLS zEbA zOLS

68.64 681,358 581,655 1.454 1.225
34.49 – – 1.336 1.150
27.45 – – – –
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xon test signifies a superiority of the EbA for the case of the
Median(z), a result that is not verified by either of the
resampling techniques.

5.4. The ISBSG7 dataset

The ISBSG is a non-profit organization that helps soft-
ware developers to produce more accurate predictions. The
ISBSG7 (ISBSG, 2001) dataset contains 1239 projects but
the initial database is considerably reduced due to the large
number of missing values and the different methods of
measuring the work effort and size of projects. It contains
11 independent variables (1 continuous and 10 nominal),
whereas the dependent variable that is used to construct
prediction models is productivity. The procedure that is
followed for the selection of the appropriate data and the
concatenation of the initial variables were presented in Sen-
tas et al. (2005).

From Table 25, we can clearly notice that OLS outper-
forms EbA for all except one accuracy measure (PRED-
mre(25)), in which the percentages are equal. The next
issue that we have to deal with, is the significance of the dif-
ferences between the global accuracy measures.

5.4.1. Parametric and non-parametric paired samples tests

Regarding the p-values of the parametric and non-para-
metric procedures (Table 26), we can infer that the
Mean(z), MdMRE and Median(z) give statistically differ-
ent results for the two comparative models.

5.4.2. Bootstrap confidence intervals
The bootstrap intervals provide similar results with the

traditional tests. However, there are two cases where there
is a disagreement:

• For MSE, the 90% and 95% CIbca (Table 27) do not
contain the zero so they give some indication of differ-
ence between the OLS and EbA.

• The 90% and 95% CIbp (Table 28) contain the zero
value while the Wilcoxon test reports a statistically sig-
nificant difference for the medians of z.

These contradictory results need further analysis.
Table 29 shows that since all the confidence intervals

contain the zero, there is no significant difference between
the PREDmre(25) and PREDmer(25) measures.

5.4.3. Permutation tests

The p-values of permutation tests (Table 30) are close
to the corresponding p-values of the parametric and
non-parametric procedures. It is interesting to note that
in the two aforementioned contradictory cases, the permu-
tation tests confirmed the traditional tests.

5.4.4. General results
Summarizing our findings (Table 31), the difference

between the accuracy measures that are based on MdMRE



Table 28
Confidence intervals for the difference of medians

CI MdMRE MdMER Median(z)

90% 95% 90% 95% 90% 95%

CIbp (0.023,0.401) (�0.020,0.426) (�0.043,0.192) (�0.074,0.197) (�0.009,0.505) (�0.028,0.553)

Table 31
General results of ISBSG7 dataset

Statistical test Rejection of null
hypothesis

MRE MER SQE z

Paired t-test for the difference of means No No No Yes
90% t-CIbse for the difference of means No No No Yes
90% CIbp for the difference of means No No No Yes
90% CIbca for the difference of means No No Yes Yes
Permutation test for the difference of means No No No Yes
Wilcoxon test for the difference of medians Yes No – Yes
90% CIbp for the difference of medians Yes No – No
Permutation test for the difference of

medians
Yes No – Yes

McNemar test for the difference of
percentages

No No – –

90% t-CIbse for the difference of percentages No No – –
90% CIbp for the difference of percentages No No – –
90% CIbca for the difference of percentages No No – –
Permutation test for the difference of

percentages
No No – –

Table 29
Confidence intervals for the difference of percentages

CI PREDmre(25) PREDmer(25)

90% 95% 90% 95%

Student’s t-CI (�0.133,0.133) (�0.159,0.159) (�0.164,0.125) (�0.193,0.154)
t-CIbse (�0.135,0.135) (�0.162,0.162) (�0.165, 0.126) (�0.194,0.155)
CIbp (�0.118,0.137) (�0.157,0.176) (�0.177, 0.118) (�0.196,0.157)
CIbca (�0.118,0.137) (�0.157,0.177) (�0.157, 0.118) (�0.196,0.157)

Table 30
Significance of all paired samples permutation tests for the global accuracy
measures

Permutation test

MMRE 0.14
MdMRE 0.04
PREDmre(25) 1
MMER 0.500
MdMER 0.244
PREDmer(25) 0.926
MSE 0.212
Mean(z) 0.028
Median(z) 0.098
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show that the OLS outperforms the EbA, whereas it seems
that there is not a significant difference between the means
of the two comparative models and these results are statis-
tically verified from the traditional and the resampling
techniques. In the case of MER, both traditional tests
and resampling techniques statistically signify that there
is no difference between the accuracy measures of the two
comparative models. The results are not clear for the case
of the SQE local accuracy measure. The regression model
seems to outperform the analogy but this result is only ver-
ified by the construction of the 90% CIbca confidence inter-
val. Finally, the traditional and resampling techniques
evidence that the OLS gives more accurate results for the
case of the z.

6. Conclusions

In this paper, we examined a crucial issue in the software
cost estimation area, concerning the selection of the ‘‘best’’
model between two comparative models. More precisely,
we considered two prediction methods; the estimation by
analogy and the regression analysis. However, our purpose
was not to conclude about the superiority of the one pre-
diction method against the other, but rather to show how
formal comparisons can be performed using alternative
statistical techniques.

The extensive examination of nine accuracy measures
that have been proposed in the literature showed that the
comparison of the accuracy of cost estimation methods
should not be based just on the accuracy indicators but
it is necessary to evaluate their differences through statisti-
cal procedures. The traditional parametric and non-para-
metric procedures offer such options. On the other hand,
in some circumstances, traditional methods might lead to
erroneous inference when the dataset is considerably small
and skewed or when the parametric assumptions do not
hold.

Alternatively, two computer intensive techniques can be
used in order to obtain reliable and accurate results. In par-
ticular, we utilized the bootstrap and the permutation tests
that are free from the normality assumptions. These tech-
niques repeat the data analysis a large number of times
on replicated datasets, all drawn by resampling from the
original observed set of data. The resampling techniques
can be used on their own in carrying out a hypothesis test
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without worrying about the distribution of the variables or
they can also be utilized with the traditional procedures in
order to reinforce their results.

Regarding the extensive experimentation that we per-
formed by applying several comparison tests to the four
datasets, we have to discuss some validity issues. First of
all, the applications are used as means for illustrating that
we cannot rely solely on any accuracy measure for taking
decisions about which model is the best. In that sense,
the results of the comparisons we made are not generalised
to any population of projects, but on the contrary, they
show that for different datasets and different accuracy mea-
sures the results can be quite contradictory. Thus, the var-
ious validity issues, usually raised when we test hypotheses,
are addressed in our research by the large variety of accu-
racy measures, the different datasets, especially the ISBSG
dataset which is multi-organizational, and most important
by the plethora of confidence intervals and tests we imple-
mented. Furthermore, the limitations of each statistical test
used for comparison is discussed explicitly. These limita-
tions are related either to the underlying theoretical distri-
bution of the original sample or the distribution of the
resampling estimates. For example, the resampling tech-
niques are subject to two sources of variation: the random-
ness of drawing the original sample from the population
and the randomness of the repeated sampling from the ori-
ginal sample. However, this added variation is considered
small and can be overcome by increasing the number of
the repeated samples.

Some interesting issues arisen from our work deserve
further research. For example, the introduction of other
bootstrap methods and the systematic identification of dif-
ferences between several cost estimation methods. Since
there are a lot of models that can be fitted to a certain data-
set, the point is the selection of the ‘‘best’’ model through
formal statistical procedures.
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